1- Let $Y = A \cos(\omega t) + c$, where A has mean m and variance σ^2, and ω and c are constants. Find the mean and variance of Y.

2-
 a. Suppose a coin is tossed n times. Each coin toss costs d dollars and the reward in obtaining X heads is $aX^2 + bX$. Find the expected value of the net reward.
 b. Suppose that the reward in obtaining X heads is a^X, where $a>0$. Find the expected value of the reward.

3- Let $g(X) = b \ a^X$, where a and b are positive constants and X is a poisson random variable. Find $E[g(X)]$.

4- Find the mean and variance of the limiter shown below
5- Let the random variables X, Y, and Z be independent continuous random variables. Find the following probabilities in terms of F(x), F(y) and F(z)
 a. \(P[|X| < 5, Y > 2, Z^2 \geq 2] \)
 b. \(P[X > 5, Y < 0, Z = 1] \)
 c. \(P[\min(X,Y,Z) > 2] \)
 d. \(P[\max(X,Y,Z) < 6] \)

6- The random vector (X, Y) is uniformly distributed (i.e. \(f(xy) = k \)) inside the regions shown below and zero elsewhere.
 a. Find the value of K in each case
 b. Find the marginal pdf for X and Y in each case.
 c. Are X and Y independent?