3.4

CIRCULAR WAVEGUIDE

A hollow metal tube of circular cross section also supports TE and TM waveguide
modes. Figure 3.11 shows the cross-section geometry of such a circular waveguide of
inner radius a. Since a cylindrical geometry is involved, it is appropriate to employ
cylindrical coordinates. As in the rectangular coordinate case, the transverse fields in
cylindrical coordinates can be derived from E. or H. field components, for TM and

b

FIGURE 3.11 Geometry of a circular waveguide.
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FIGURE C.1 Bessel functions of the first and second kind.




Zeros of Bessel functions of first kind: Jyu(z) =0
for 0 < ¢ < 12

2

3

F | 4
0| 2.4048 5.5200 8.6537 11,7951
1 | 3.8317 T.0155 10.1743

2 | 5.1356 4172 11.6198

3| 6.3801 9.7610

4 | 7.5883  11.0647

3 B.7714

5 9.9361

;

11.0863




Extrema of Bessel functions of first kind:

dJnixz)/de =0for 0 < x < 12

] I 2 3 4
0 3.8317 7.0156 10.1735 13.3237
1 1.8412 5.3314 8.5363 11.7060
2 3.0542 6.7061 9.9695

3 4.2012 8.0152 11.3459

4 5.3175 9.2824

51 64156 10.5199

6| 7.5013 11.7349

7 8.5778

8 9.6474

21 10.7114

10 | 11.7709
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TE modes, respectively. Paralleling the development of Section 3.1, the cylindrical
components of the transverse fields can be derived from the longitudinal components as

E, = ;j' (36;3 + “;“ a;*), 3.110a
- (JE )
Hy, = ;f (uea;* + —’Eajg) 3.110d

where k2 = k? — 3%, and e9%% propagation has been assumed. For ¢™79% propagation,
replace /3 with —/3 in all expressions.



TE Modes )

For TE modes, E, = 0, and H, is a solution to the wave equation,
V?H, + kK*H, = 0. 3.111
If H.(p,®,z) = h.(p, $)e~7P% (3.111) can be expressed in cylindrical coordinates as
# 18 18
——7+——+~——;+k§>hz( ) =0. 3.112
(39* pop  p*0¢° g

Again, a solution can be derived using the method of separation of variables. Thus, we let

h-(p, ®) = R(p)P(¢), 3.113



and substitute into (3.112) to obtain
1d*R 1 dR 1 d*P

ol . k: =0, 3.114
R dp? " pR dp s prP dg? +he
‘d’R dR . -14d?P
or p——-,"+'£*_-rp”kg=—“‘"—,:.
R dp- R dp . P d¢-

The left side of this equation depends on p (not ¢), while the right side depends only on
¢. Thus, each side must be equal to a constant, which we will call k. Then,

—_IE —
P dg? ‘
&P,
or E@,—Z+k¢P=0. 3.115
Also,
, d? d
p° R-‘-p—ﬁﬁ-fpzkﬁ—ﬁri)fﬁ:{l 3.116



The general solution to (3.115) 1s
P(¢) = Asinkgzp + Beoskyo. 3.117

Since the solution to h. must be periodic in ¢ (that 1s, h.(p, ¢) = h.(p, ¢ £ 2mm)), kg
must be an integer, n. Thus (3.117) becomes

P(d) = Asinng + B cos ng, * 3118

while (3.116) becomes

+p— + (p°kZ — 1’ )R—" © 3119

which is recognized as Bessel's differential equation. The solution is
R(p) = CJ(k.p) + DYy (kep), ' 3.120

where J,,(x) and Y, (x) are the Bessel functions of first and second kinds, respectively.
Since Y, (k.p) becomes infinite at p = 0, this term is physically unacceptable for the
circular waveguide problem, so that D = (. The solution for /i, can then be written as

h.(p,¢) = (Asinng + Bcos ng)J,(k.p), 312]

where the constant €' of (3.120) has been absorbed into the constants A and B of (3.121).



We must still determine the cutoff wavenumber k., which we can do by enforcing the
boundary condition that F.,, = 0 on the waveguide wall. Since £, = 0, we must have
that

Lqa(p, @) =0, at p = a. 3.122

From (3.110b), we find FE; from H, as

_ Jwit . . ) il .

Equ(p, ¢, 2) = %(A sinng + B cosng)J!, (keple™9, 3.123
C

where the notation .J/ (k.p) refers to the derivative of .J,, with respect to its argument.

For E, to vanish at p = a, we must have

J:l (kea) = 0. 3.124

If the roots of J/(x) are defined as pl,,,, so that J, (p),,) = 0, where p.,,. is the mth

LTI ?
root of J/, then k. must have the value

. = Pnm 3.125
A

"Com

!
TLITL

Values of p. . are given in mathematical tables; the first few values are listed in Table 3.3.



The TE,.,,, modes are thus defined by the cutoff wavenumber, k... = pl,./a, where
n refers to the number of circumferential (¢) variations, and m refers to the number of
radial (p) vanations. The propagation constant of the TE,,,, mode 1s

/ 2
Brnm = VEk*— k2= \/J;.ﬂ - (‘“T) ? 3.126




TABLE 3.3 Values of p,,,,, for TE Modes of a Circular Waveguide

n p:].] p:lll p'.{ﬂ

0 3.832 7.016 10.174
1 1.841 5.331 8.536
2 3.054 6.706 9970

with a cutoff frequency of

f — kﬂ' — }:{?H’H 3 12?
e 2r /e 2ma/hE '

The first TE mode to propagate is the mode with the smallest p/,, ., which from Table 3.3
is seen to be the TE;; mode. This mode is then the dominant circular waveguide mode,
and the one most frequently used. Because m > 1, there is no TE,p mode, but there 1s
a TEy; mode.



Tﬁe transverse field components are, from (3.110) and (3.121),

E,= _E’;"“ (Acosng — Bsinng) J, (k.p) e3P 3.128a
E, = j:’“ (Asinng + Bcosng) J,(kep)e 7%, 3.128b
H,= _}iﬁ(fl sinné + B cos ng)J), (k.p)e 777, 3.128¢ .
Hy = _é’in(A cos ng — B sin ngb)Jn(k,:p)e'_‘jﬂ‘. 3.128d
The wave impedance is
Zyp = Lo o “Ee _ Tk 3.129

Hﬂ"-‘_Hp B



In the above solutions there are two remaining arbitrary amplitude constants, A and
B. These constants control the amplitude of the sin n¢ and cos ng terms, which are
independent. That is, because of the azimuthal symmetry of the circular waveguide,
both the sinn¢ and cosng terms are valid solutions, and can be present in a specific
problem to any degree. The actual amplitudes of these terms will be dependent on the
excitation of the waveguide. From a different viewpoint, the coordinate systemn can be
rotated about the z-axis to obtain an /i, with either A =0 or B = (.

Now consider the dominant TE;; mode with an excitation such that B = 0. The

fields can be written as

H. = Asin¢J(keple 7%, 3.130a

E, = Z;-’i“;_‘q cos ¢J, (kep)e =972, 3.130b

Ey = =8 Asin ¢ J(kep)e ™77 3.130¢
_ _jﬁ : ' —ifx

= p AsinoJ (kep)e : 3.130d

—j8 —j8=2 .

Hy = = Acos o Ji(kep)e 777, . 3.130e

E,=0. 3.130f



The power flow down the guide can be computed as
1 a n _
Pﬂz-—l{ef / E x H* Zpdpdp
2 p=0 H=0
1 a 2m . - _
= ERE:/ D/@:ﬂ [Equf, — EgH, | pdodp

— WHIA LRE( ﬂ[ f [— cos’ oI (kep) + L sin® J1 2 (k, p]} pd¢ dp

W) A|2Re(;3)
N 2k

1 .,
[—Jf(kcp} + Pkiurir E(kcﬂ]] dp
p=0 P

B nwi| A*Re(5)
B 4k*

(pi1 — 1) Ji(kea), 3.131

which is seen to be nonzero only when /3 is real, corresponding to a propagating mode.
(The required integral for this result is given in Appendix C.)



A e e

Attenuation due to dielectric loss is given by (3.29). The attenuation due to a lossy
waveguide conductor can be found by computing the power loss per unit length of guide:

]

P, = R""/ '\ J.IPade
2 =l

= ‘%[ [|Hyl> + |H.|*] ade
¢

4 2p [ 32
— / | s cos” ¢ + sin .:33] IE{R a)ado
=0

ab

2
Dl R el e ( ) T2 (k.a). 3.132

The attenuation constant 1s then

P, R, (kia®+ 5)

%= 2P, T mkBa@ — 1)
R ( ) K )
= —— k% + — Np/m. 3.133
akn p — 1



TM Modes

For the TM modes of the circular waveguide, we must solve for E, from the wave
equation in cylindrical coordinates:

(82 10,1 8E+k3) 0 3.134
-j T = s P {1 GZ - L -
Op* pdp p* ¢

where E.(p, ¢, 2) = e,(p, ¢)e~79% and k? = k* — /3. Since this equation is identical to
(3.107), the general solutions are the same. Thus, from (3.121),

e:(p, ®) = (Asinng + Bcosne)J,(k.p). 3.135

The difference between the TE solution and the present solution is that the boundary
conditions can now be applied directly to e. of (3.135), since

E.(p,0) =0, at p = a. 3.136

Thus, we must have .
Jn(kea) =0, 3.137
or Ke = Pum/a, 3.138

where P, 1s the mth root of J,.(x); that is, J,,(pnm) = 0. Values of p,,,, are given in
mathematical tables; the first few values are listed in Table 3.4.



The propagation constant of the TM,,,,, mode 1is

."B'u.m =V k? — R% = vsz - (I}'n.m./ﬂl)z- 3.139

The cutoff frequency is

k(_' p'ﬂ'ﬂ’t h
— = " 3.140
Jeom 2w, /€ 2ma. /L€
Thus, the first TM mode to propagate is the TMg, mode, with py; = 2.405. Since this is
greater than pj, = 1.841 of the lowest order TE;; mode, the TE;; mode is the dominant
mode of the circular waveguide. As with the TE modes, m > 1, so there is no TM;g

mode.
From (3.110), the transverse fields can be derived as

—i8 _
E,= f (A sinng + B cos ng)J. (keple 472, 3.141a

TABLE 3.4 Values of p,:m for TM Modes of a Circular Waveguide

n P Pn2 Pni

0 2405 5520 8.654
1 3.832 7.016 10.174
2 5135 8417 11.620




~70n

Ey = —5—(Acosng — Bsin nd)Jn(kep)e 72, 3.1415
oP
. Jwen , . —iBz
H, = 12 (Acosng — Bsinng)J,(k.p)e 777, 3.141ce
Hy = ':ifi(fl sinng + B cosng)J;, (kep)e 772 3.141d

Cc

The wave impedance 1s

Zm = H, - H, & 3.142
Calculation of the attenuation for TM modes is left as a problem. Figure 3.12 shows
the attenuation due to conductor loss versus frequency for various modes of a circular
waveguide. Observe that the attenuation of the TEy, mode decreases to a very small
value with increasing frequency. This property makes the TEg; mode of interest for
low-loss transmission over long distances. Unfortunately, this mode is not the dominant
mode of the circular waveguide, so in practice power can be lost from the TEqg; mode
to lower-order propagating modes.
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FIGURE 3.13 Cutoff frequencies of the first few TE and TM modes of a circular
. waveguide, relative to the cutoff frequency of the dominant TE;; mode.

Figure 3.13 shows the relative cutoff frequencies of the TE and TM modes, and
Table 3.5 summarizes resulis for wave propagation in circular waveguide. Field lines
for some of the lowest order TE and TM modes are shown in Figure 3.14.



EXAMPLE 3.2 Characteristics of a Circular Waveguide

Find the cutoff frequencies of the first two propagating modes of a circular
waveguide with @ = 0.5 cm and ¢, = 2.25. If the guide is silver plated and

the dielectric loss tangent is 0.001, calculate the attenuation in dB for a 50 ¢cm
length of guide operating at 13.0 GHz.

Solution
From Figure 3.13, the first two propagating modes of a circular waveguide
are the TE;; and TMp; modes. The cutoff frequencies can be found using

(3.127) and (3.140):

p}c 1.841(3 x 10%)
TE;; : f = ——— = = 11.72 GHz,
" Je= Zmaye 27(0.005)+/2.25
']
™o : f, = P _ 2406 x1Y) 54 6h,

© 2ma/E;  27(0.005)v/2.25
So only the TE,; mode 1s propagating at 13.0 GHz. The wavenumber is .

L 2nfye _ 2n(13 x 10°)v2.25
DI 3 x 108

and the propagation constant of the TE;; mode is

1oy 2 / 2
B = \/kl - (%l) = ‘\#“’(408.4)1 - (01——33;) =176.7 m~ ..

— 4084 m™ !,




The attenuation due to dielectric loss 1s calculated from (3.29) as

k*tané  (408.4)%(0.001)
- _ — 0.47 Np/m.
U= "3 2(176.7) pim

The conductivity of silver is o = 6.17 x 107 S/m, so the surface resistance is

P:n

Then from (3.133) the attenuation due to metallic loss is

R, k2 )
Qe = k2 + ——— | = 0.066 Np/m.
akn ( p” 1 p

So the total attenuation factor is
a = a, + aqg = 0.54 Np/m.

Note that the dielectric loss dominates this result. The attenuation in the 50 ¢cm
long guide 1s

attenuation (dB) = —20loge % = —201og ¢ U345 = 2 38 {B. O
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FIGURE 3.14

Field lines for some of the lower order modes of a circular waveguide.

Reprinted with permission from Fields and Waves in Communication Electronics, 5. Ramo, LR,
Whinnery, and T. Van Duzer. Copyright (©) 1965 by John Wiley & Sons, Inc. Table 8.04,



