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3.1.3 A Vector View of Signals and Noise

We now present a geometric or vector view of signal waveforms that are useful for
either baseband or bandpass signals. We define an N-dimensional orthogonal space
as a space characterized by a set of N linearly independent functions {&b,(1)], called
basis functions. Any arbitrary function in the space can be generated by a lin-
ear combination of these basis functions. The basis functions must satisfy the
conditions
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is called the Kronecker delta function and is defined by Equation (3.8b). When the
K; constants are nonzero, the signal space is called orthogonal. When the basis
functions are normalized so that each K; = 1, the space is called an orthonormal
space. The principal requirement for orthogonality can be stated as follows. Each
U;(t) function of the set of basis functions must be independent of the other mem-
bers of the set. Each () must not interfere with any other members of the set in
the detection process. From a geometric point of view, each y(r) is mutually
perpendicular to each of the other s, (t) for j # k. An example of such a space with
N =3 is shown in Figure 3.3, where the mutually perpendicular axes are designated
Py(2), Ua(r), and Us(r). If Uy(r) corresponds to a real-valued voltage or current
waveform component, associated with a 1-(} resistive load, then using Equations
(1.5) and (3.8), the normalized energy in joules dissipated in the load in T seconds,
due to s, is
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One reason we focus on an orthogonal signal space is that Euclidean distance
measurements, fundamental to the detection process, are easily formulated in
such a space. However, even if the signaling waveforms do not make up such an
orthogonal set, they can be transformed into linear combinations of orthogonal
waveforms. It can be shown [3] that any arbitrary finite set of waveforms |[s,(1)}
(i=1,..., M), where each member of the set is physically realizable and of dura-
tion 7, can be expressed as a linear combination of N orthogonal waveforms s, (1),
Us(f), . .. . Un(7), where N < M, such that

si(t) = apn(r) + apln(t) + -+ aabiNt)
$5(t) = axly(t) + anln(t) + -+ + aspp(t)

salt) = apndi(t) +appln(t) + - + appabin(t)



These relationships are expressed in more compact notation as

N
= da () i=1,....M (3.10)
= N=M
where
—f (O ()dt i=1,...M 0=t =T (3.11)
fim Y N

The coefficient a;; is the value of the Js(f) component of signal s,(t). The form of the
{(1)} is not specified; it is chosen for convenience and will depend on the form of
the signal waveforms. The set of signal waveforms, {s,(1)}, can be viewed as a set of



vectors, {s;} = [a;, aa. ..., an). If, for example, N = 3, we may plot the vector s,
corresponding to the waveform

Sm(r) = ﬂmld}l(f) - ﬂmzlllz(f) + ﬂm3l.[}3(f)

as a point in a three-dimensional Euclidean space with coordinates (a,,;. a,,>. @,,3).
as shown in Figure 3.3. The orientation among the signal vectors describes the rela-
tion of the signals to one another (with respect to phase or frequency), and the am-
plitude of each vector in the set {s;} is a measure of the signal energy transmitted
during a symbol duration. In general, once a set of N orthogonal functions has been
adopted, each of the transmitted signal waveforms, s(r), is completely determined
by the vector of its coefficients,

s, = (a;, a2, ... .4,8) i=1,....M (3.12)



We shall employ the notation of signal vectors, {s}, or signal waveforms, {s(r)},
as best suits the discussion. A typical detection problem, conveniently viewed in
terms of signal vectors, is illustrated in Figure 3.4. Vectors s, and s, represent proto-
type or reference signals belonging to the set of M waveforms, [s,(1)]. The receiver
knows, a priori, the location in the signal space of each prototype vector belonging to
the M-ary set. During the transmission of any signal, the signal is perturbed by noise
so that the resultant vector that is actually received is a perturbed version (e.g.,s;+n
or s, +n) of the original one, where n represents a noise vector. The noise is additive
and has a Gaussian distribution; therefore, the resulting distribution of possible re-
ceived signals is a cluster or cloud of points arounds; and s,.. The cluster is dense in the
center and becomes sparse with increasing distance from the prototype. The arrow
marked “r” represents a signal vector that might arrive at the receiver during some
symbol interval. The task of the receiver is to decide whether r has a close “resem-
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blance” to the prototype s;, whether it more closely resembles s;, or whether 1t 1s
closer to some other prototype signal in the M-ary set. The measurement can be
thought of as a distance measurement. The receiver or detector must decide which of
the prototypes within the signal space is closest in distance to the received vector r.
The analysis of all demodulation or detection schemes involves this concept of
distance between a received waveform and a set of possible transmitted waveforms.
A simple rule for the detector to follow is to decide that r belongs to the same class as
its nearest neighbor (nearest prototype vector).



3.1.3.1 Waveform Energy

Using Equations (1.5), (3.10), and (3.8), the normalized energy E,, associated
with the waveform s,(r) over a symbol interval T can be expressed in terms of the
orthogonal components of s;(f) as follows:
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Equation (3.17) is a special case of Parseval’s theorem relating the integral of the
square of the waveform s,(¢) to the sum of the square of the orthogonal series coef-
ficients. If orthonormal functions are used (i.e., K, = 1), the normalized energy over
a symbol duration 7T is given by

N
E=3a (3.18)

J =1

If there is equal energy £ in each of the s(r) waveforms, we can write Equation
(3.18) in the form

E= > aj, foralli (3.19)



Example 3.1 Orthogonal Representation of Waveforms

Figure 3.5 illustrates the statement that any arbitrary integrable waveform set can be
represented as a linear combination of orthogonal waveforms. Figure 3.5a shows a set

of three waveforms, s,(1), s5(1), and s5(¢).

(a) Demonstrate that these waveforms do not form an orthogonal set.

(b) Figure 3.5b shows a set of two waveforms, ,(¢) and b,(r). Verify that these wave-
forms form an orthogonal set.

(c) Show how the nonorthogonal waveform set in part (a) can be expressed as a linear
combination of the orthogonal set in part (b).

(d) Figure 3.5c illustrates another orthogonal set of two waveforms, | (1) and ().
Show how the nonorthogonal set in Figure 3.5a can be expressed as a linear com-
bination of the set in Figure 3.5c¢.



Solution

(a) s5,(s), s2(¢), and s4(7) are clearly not orthogonal, since they do not meet the
requirements of Equation (3.8); that is, the time integrated value (over a symbol
duration) of the cross-product of any two of the three waveforms is not zero. Let
us verify this for s,(¢) and s,(¢):

T 112 r
f si(t)so(t) dt §i(1)s5(t) dt + f si(t)so(1) dr
0 1/2

- 0
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- r‘(—1)(2)m + f (=3)(0)dt = =T
o

J

Similarly, the integral over the interval 7 of each of the cross-products s,(f)s+(f)
and s,(f)s4(1) results in nonzero values. Hence, the waveform set {s,(r)} (i = 1, 2, 3)
in Figure 3.5a is not an orthogonal set.

(b) Using Equation (3.8), we verify that () and {5(¢) form an orthogonal set as
follows:

) m .
I Wy (Ohss(e) dt = f (1)(1)dr + f (=1)1)dt =0
T2

0 il

(c) Using Equation (3.11) with K, = 7, we can express the nonorthogonal set {s,(1)} (i =
1,2, 3) as a linear combination of the orthogonal basis waveforms (U{7)} (j=1.2):
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Figure 3.5 Example of an arbitrary signal set in terms of an orthogonal set.
(a) Arbitrary signal set. (b) A set of orthogonal basis functions. (c) Another set of
orthogonal basis functions.



s1(2) = Un(r) — (1)
sa(t) = ny(r) + y(r)
sa(t) = 24(1) — (1)

(d) Similar to part (c), the nonorthogonal set {s(f)} (i = 1, 2, 3) can be expressed in
terms of the simple orthogonal basis set {s/(¢)} (=1, 2) in Figure 3.5¢, as follows:

si(r) = —Pi(r) — 33(r)
s2(t) = 24(1)
§3(1) = Pi(r) — 3s(e)

These relationships illustrate how an arbitrary waveform set [s,(r)} can be ex-
pressed as a linear combination of an orthogonal set [(r)}, as described in Equa-
tions (3.10) and (3.11). What are the practical applications of being able to
describe s,(r), s5(£), and s5(r) in terms of y5(¢), (7), and the appropriate coeffi-

cients? If we want a system for transmitting waveforms s,(¢), s,(¢), and s5(¢), the
transmitter and the receiver need only be implemented using the two basis func-
tions (1) and ys,(¢) instead of the three original waveforms. The Gram—Schmidt
orthogonalization procedure provides a convenient way in which an appropriate

choice of a basis function set {U;(¢)}, can be obtained for any given signal set {s,(1)).
(It is described in Appendix 4A of Reference [4].)
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