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Section 3 – Modulation
Module 1 – Signal Space Representation of Signals

Set 2 – Signal Space Concepts
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Modulation Principles

• Almost all communication systems transmit digital 
data using a sinusoidal carrier waveform.
– Electromagnetic signals propagate well
– Choice of carrier frequency allows placement of signal in 

arbitrary part of spectrum

• Physical system implements modulation by:
– Processing digital information at baseband
– Pulse shaping and filtering of digital waveform
– Baseband signal is mixed with signal from oscillator
– RF signal is filtered, amplified and coupled with antenna
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Representation of Modulation Signals

• We can modify amplitude, phase or frequency.
• Amplitude Shift Keying (ASK) or On/Off Keying 

(OOK):
• Frequency Shift Keying (FSK):

• Phase Shift Keying (PSK):
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Representation of Bandpass Signals

Bandpass signals (signals with small bandwidth 
compared to carrier frequency) can be represented in 
any of three standard formats:

• Quadrature Notation

where x(t) and y(t) are real-valued baseband signals 
called the in-phase and quadrature components of s(t)

( ) ( )s t x t f t y t f tc c( ) ( ) cos ( ) sin= −2 2π π
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Representation of Bandpass Signals (continued)

• Complex Envelope Notation

where         is the complex envelope of s(t).
• Magnitude and Phase

where                                      is the magnitude of s(t),
and                                is the phase of s(t).
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Key Ideas from I/Q Representation of Signals

• We can represent bandpass signals independent of 
carrier frequency.

• The idea of quadrature sets up a coordinate system 
for looking at common modulation types.

• The coordinate system is sometimes called a signal 
constellation diagram.
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Example of Signal Constellation Diagram:  BPSK

•

x t( )

y t( )

X X

{ }x t y t( ) , ( )∈ ± =1 0
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Example of Signal Constellation Diagram:  QPSK

• { } { }x t y t( ) , ( )∈ ± ∈ ±1 1

x t( )

y t( )

X X

X X
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Example of Signal Constellation Diagram:  QAM

• { } { }x t y t( ) , , , , ( ) , , ,∈ − − + + ∈ − − + +3 1 1 3 3 1 1 3
y t( )
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X
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Interpretation of Signal Constellation Diagram

• Axis are labeled with x(t) and y(t)
• Possible signals are plotted as points
• Signal power is proportional to distance from origin
• Probability of mistaking one signal for another is 

related to the distance between signal points
• Decisions are made on the received signal based on 

the distance to signal points in constellation
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A New Way of Viewing Modulation

• The I/Q representation of modulation is very 
convenient for some modulation types.

• We will examine an even more general way of 
looking at modulation using signal spaces.

• By choosing an appropriate set of axis for our signal 
constellation, we will be able to:
– Design modulation types which have desirable properties
– Construct optimal receivers for a given type of modulation
– Analyze the performance of modulation types using very 

general techniques.
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Vector Spaces

• An n-dimensional vector consists 
of n scalar components

• The norm (length) of a vector      is given by: 

• The inner product of two vectors                               
and                                     is given by:

[ ]v = v v vn1 2, , ,…
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Basis Vectors

• A vector       may be expressed as a linear 
combination of it’s basis vectors :

where 
• Think of the basis vectors as a coordinate system (x-

y-z... axis) for describing the vector 
• What makes a good choice of coordinate system?

v
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A Complete Orthornomal Basis

• The set of basis vectors                         should be 
complete or span the vector space        .  Any vector 
can be expressed as                      for some

• Each basis vector should be orthogonal to all others:

• Each basis vector should be normalized:
• A set of basis vectors which satisfies these three 

properties is said to be a complete orthonormal basis.
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Signal Spaces

Signals can be treated in much the same way as vectors.
• The norm of a signal                        is given by:

• The inner product of signals          and           is:

• Signals can be represented as the sum of basis 
functions:
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Basis Functions for a Signal Set

• One of M signals is transmitted:
• The functions                            (               ) form a 

complete orthonormal basis for the signal set if
– Any signal can be described by a linear combination:

– The basis functions are orthogonal to each other: 

– The basis functions are normalized:
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Example of Signal Space

Consider the following signal signal set:
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Example of Signal Space (continued)

• We can express each of the signals in terms of the 
following basis functions:

• Therefore the basis is complete

-1

+1
t
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1 2 -1
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t
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1 2

s t f t f t1 1 21 1( ) ( ) ( )= ⋅ + ⋅ s t f t f t2 1 21 1( ) ( ) ( )= ⋅ − ⋅
s t f t f t3 1 21 1( ) ( ) ( )= − ⋅ + ⋅ s t f t f t4 1 21 1( ) ( ) ( )= − ⋅ − ⋅
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Example of Signal Space (continued)

• The basis is orthogonal:

• The basis is normalized:
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Signal Constellation for Example

• We’ve seen this signal constellation before

X X

X X

f t2( )

f t1( )

s t1( )

s t2( )

s t3( )

s t4( )
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Notes on Signal Spaces

• Two entirely different signal sets can have the same 
geometric representation.

• The underlying geometry will determine the 
performance and the receiver structure for a signal 
set.

• In both of these cases we were fortunate enough to 
guess the correct basis functions.

• Is there a general method to find a complete 
orthonormal basis for an arbitrary signal set?
– Gram-Schmidt Procedure


