Digital Communications and Simulation
ECE 5654

Section 3 — Modulation

Module 1 — Signal Space Representation of Signals
Set 2 — Signal Space Concepts
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Modulation Principles

 Almost all communication systems transmit digital
data using a sinusoidal carrier waveform.
— Electromagnetic signals propagate well
— Choice of carrier frequency allows placement of signal in
arbitrary part of spectrum
e Physical system implements modulation by:
— Processing digital information at baseband
— Pulse shaping and filtering of digital waveform
— Baseband signal is mixed with signal from oscillator
— RF signal isfiltered, amplified and coupled with antenna
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Representation of Modulation Signals

We can modify amplitude, phase or frequency.

Amplitude Shift Keying (ASK) or On/Off Keying
(OOK): 1= Acoy2nf:t),0=0

Frequency Shift Keying (FSK):
1= Acog2nfqt),0= Acog2xnfqt)
Phase Shift Keying (PSK):
1= Acog2nft)
0= Acog2nft+ ) = — Acoq 2nft)
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Representation of Bandpass Signals

Bandpass signals (signals with small bandwidth
compared to carrier frequency) can be represented in
any of three standard formats:

Quadrature Notation

s(t) = x(t) coq 2nfst) — y(t) sin(2xfct)
where x(t) and y(t) are real-valued baseband signals
called the In-phase and quadrature components of s(t)
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Representation of Bandpass Signals (continued)

 Complex Envelope Notation |
S(t) = Re{(x(t) + Jy(n)e127e! | = Ref g ()17
where g(t) Is the complex envelope of S(t).

 Magnitude and Phase
s(t) = a(t) coq 2nft + 6(t))

where a(t) = J X2(1)+Y2(t)  isthe magnitude of s(t),
and o(t) = tan‘l[iég} IS the phase of (t).
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Key I deas from |/Q Representation of Signals

* We can represent bandpass signals independent of
carrier frequency.

* Theideaof quadrature sets up a coordinate system
for looking at common modulation types.

* The coordinate system is sometimes called asignal
constellation diagram.
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Example of Signal Constellation Diagram: BPSK

X(t) e{x1},y(t)=0
y(t)

X(t)
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Example of Signal Constellation Diagram: QPSK

X(t) e{x1},y(t) {1
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Example of Signal Constellation Diagram: QAM

X(t) e{—-3-1+1+3},y(t) € {—-3-1+1+3}
y(t)
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| nterpretation of Signal Constellation Diagram

AXxis are labeled with x(t) and y(t)
Possible signals are plotted as points
Signal power is proportional to distance from origin

Probability of mistaking one signal for another is
related to the distance between signal points

Decisions are made on the received signal based on
the distance to signal points in constellation
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A New Way of Viewing Modulation

 Thel/Q representation of modulation is very
convenient for some modulation types.

 Wewill examine an even more general way of
looking at modulation using signal spaces.

e By choosing an appropriate set of axisfor our signal
constellation, we will be able to:
— Design modulation types which have desirable properties
— Construct optimal receiversfor a given type of modulation

— Analyze the performance of modulation types using very
general techniques.
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Vector Spaces

 Ann-dimensional vector y — [Vi,vo,...,vn] consists
of n scalar components {vy,vs,...,vp}

e Thenorm (length) of avector v isgiven by:

N
HVH=W/,ZVi2
1=1

 Theinner product of two vectors V1 =[V11,V12,...,Vin ]
and Vo =[Vo1,V02,...,Von | isgiven by:

N
V1-V2 = 2 WjjVy
i=1
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Basis Vectors

e Avector v may be expressed asalinear
combination of it's basis vectors {ej,e>,...,en}

N
V= 2V§
i=1

where Vi =g -V

* Think of the basis vectors as a coordinate system (Xx-
y-Z... axis) for describing the vector v

 What makes a good choice of coordinate system?
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A Complete Orthornomal Basis

The set of basis vectors {€1,€2,---.€n} should be
complete or span the vector space sn” Any vector
can be expressed as , — ZV g forsome {vi }

1=1

Each basis vector should be orthogonal to all others:
6 -ej=0Vi=#|

Each basis vector should be normalized: g | =1 Vi

A set of basis vectors which satisfies these three
propertiesis said to be a complete orthonormal basis.
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Signal Spaces

Signals can be treated in much the same way as vectors.
 Thenorm of asignal x(t),t [a,b] isgiven by:

; 12
)= D] =

» Theinner product of signals x;(t) and x(t) is:

b
xq(1), x2(1)) = [ xa ()" (t)dt
a
e Signals can be represented as the sum of basis

functions: 1y~ 3 . £, (1), Xic = (X(t), Fic (1)’
=
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Basis Functionsfor a Signal Set

« Oneof M signasistransmitted: {si(t)....,sm ()}

» Thefunctions { fi(t),..., fk (1)} ( K<M )forma
complete orthonormal basisfor the signal set if
— Any signal can be described by alinear combination:

S(O= 35 kfk®)i=1....M
— The basis funcgions:are orthogonal to each other:
[ f; (t)fj*(t)dt =0,VI # |
— The basis funé%i ons are normalized:

b 2
[ fK(t) dt =1,vk

a
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Example of Signal Space

Consider the following signal signal set:

Sl(t) SZ(t)
+1 +1
t t
1 1 2 14 1L 2
s3(t) s4(t)
+1 +1 t
t
_1 2 -l 1 2
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Example of Signal Space (continued)

e \We can express each of the signalsin terms of the
following basis functions:

f(t) f A1)

+1 +1
t t
1 1 2 1 1 2

s(t) =1- f4(t) +1- fo(t) S(t) =1- f1(t) - 1- fo(t)
s3(t) = -1 fy(t) +1- fo(t)  Su(t)=-1-1(t) -1 T2(t)

* Therefore the basisis complete
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Example of Signal Space (continued)

* The basisis orthogonal:

[ f1(0 f2" ()t =0

o0

e Thebasisisnormalized:

ff2(t)dt = ][ fp(t)dt =1

—00 —00
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Signal Constellation for Example

e We've seen this signal constellation before
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Notes on Signal Spaces

Two entirely different signal sets can have the same
geometric representation.

The underlying geometry will determine the
performance and the recelver structure for asignal
Sel.

In both of these cases we were fortunate enough to
guess the correct basis functions.

|s there a general method to find a complete
orthonormal basis for an arbitrary signal set?
— Gram-Schmidt Procedure
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