Section 2 - Digital Representation of Analog Signals
Module 1 - Sampling

Set 2 - Lowpass Sampling Theorem
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To sample a waveform 1s to represent that waveform at discrete
points in time. These points are assumed to be periodic in time.
The sampling period 1s 7 and the reciprocal 1s the sampling

frequency.
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The sampling operation 1s often modeled as multiplying
the signal to be sampled, x(7), by a sampling wavetorm, p(?).
which 1s periodic at the sampling frequency.
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We will assume impulse-function sampling. For this case
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Two Choices for the Sampling
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The amplitude of the pulse
carries the sample value. This
suggests the closing of a switch
for short mstants (PAM).
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The weight of the impulse
carries the sample value.
For this case, we use the
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Impulse Function Sampling
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Since the sampling wavetorm 1s periodic, it can be expressed in
a Fourier series.
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The Fourier coefficients are
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Impulse Function Sampling
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Convolution with an Impulse
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Time/Frequency Domain Sampling

Sampling 1n the time domain
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Sampling 1n the frequency domain
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Sampling - Frequency Domain
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Lowpass Sampling Theorem
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Lowpass Sampling Theorem - 2

We have theretfore 1illustrated the lowpass sampling theorem:

A bandlimited lowpass signal may be sampled and reconstructed
without error from the samples if the sampling frequency exceeds
2f, where f, 1s the highest frequency in the signal being sampled.



Reconstruction and Interpolation
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The reconstructed signal 1s given by

X,.(1)= ix(ﬂ;)ﬁ(r— k1)yxh(r)
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where /1(7) 1s the impulse response of the reconstruction filter.
This gives
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The problem 1s to find an appropriate (7).



Reconstruction
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Perfect Reconstruction

Passband of
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Perfect Reconstruction

From
(= 3 x(kT,)h(1—kT,)
k=—=x
and |
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This 1s not practical since sinc(x) 1s infinite 1in extent and 1t
therefore takes an infinite number of samples to interpolate
a single point.



Perfect Reconstruction - 2

A practical solution 1s obtained by truncating the series to
2N+1 terms
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The appropriate value for NV 1s a tradeoft between accuracy and
computational burden.
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The Bandpass Sampling Theorem

We consider the bandpass sampling theorem for completeness.
In the work to follow in this course we will for the most part
be concerned with the lowpass sampling theorem.

Thus, our treatment of the bandpass sampling theorem 1s very
brief.

[f a bandpass signal has bandwidth B and highest frequency f,
the signal can be sampled and reconstructed using a sampling
frequency of f, = 2 f, /m where m 1s the largest mnteger not
exceeding f, / B. All higher sampling frequencies are not
necessarily usable unless they exceed 2 f, .
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Complex Envelope
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We will have much more to say about the complex envelope
representations for bandpass signals later. For now we simply
observe that the mmimum sampling frequency 1s essentially
independent of the representation for the bandpass signal.

1. Bandpass signal: f, > 2B
2. Complex envelope (bandpass) signal: /. > 2B



Extra material
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Formatting Source Coding Baseband Signaling Equalization

Character coding Predictive coding PCM waveforms {line codes) Maximum-likelihood sequence

Sampling Block coding Nonreturn-to-zero (NRZ) estimation (MLSE)

Quantization Variable length coding Return-to-zero (RZ)} Equalization with filters

Pulse code modulation Synthesis/analysis coding Phase encoded Transversal or decision feedback
(PCM) Lossless compression Multilevel binary Preset or Adaptive

Lossy compression M-ary pulse modulation Symbol spaced or fractionally

PAM, PPM, PDM spaced

Bandpass Signaling Channel Coding
Coherent Noncoherent Waveform Structured
Sequences
Phase shift keying (PSK) Differential phase shift keying (DPSK) Iy ianali d
Frequency shift keying (FSK) Frequency shift keying (FSK) A -?_I'V S‘alglna Ing
Amplitude shift keying (ASK) Amplitude shift keying (ASK) D” r“p" a | Block
Continuous phase modulation (CPM) Continuous phase modulation (CPM) T””F’g”"da 4 modulati Convolutional
Hybrids Hybrids rellis-coded modulation Turbo
Synchronization Multiplexing/Multiple Access Spreading ' Encryption
Frequency synchronization Frequency division (FDM/FDMA) Direct sequencing (D5) Block
Phase synchronization Time division (TDM/TDMA) Frequency hopping (FH) Data stream
Symbol synchronization Code division (CODM/CDMA) Time hopping (TH)
Frame synchronization Space division (SDMA) Hybrids
Network synchronization Polarization division (PDMA)

Figure 2.1 Basic digital communication transformations
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2.4 FORMATTING ANALOG INFORMATION

IT the information 15 analog, it cannot be character encoded as in the case of textual
data; the information must first be transformed into a digital format. The process of
transforming an analog waveform into a form that is compatible with a digital com-

munication system starts with sampling the waveform to produce a discrete pulse-
amplitude-modulated waveform, as described below,



2.4.1 The Sampling Theorem

The link between an analog waveform and its sampled version is provided by what
is known as the sampling process. This process can be implemented in several ways,
the most popular being the sample-and-hold operation. In this operation, a switch
and storage mechanism (such as a transistor and a capacitor, or a shutter and a
filmstrip) form a sequence of samples of the continuous input waveform. The out-
put of the sampling process is called pulse amplitude modulation (PAM) because
the successive output intervals can be described as a sequence of pulses with ampli-
tudes derived from the input waveform samples. The analog waveform can be
approximately retrieved from a PAM waveform by simple low-pass filtering. An
important question: how closely can a filtered PAM waveform approximate the
original input waveform? This question can be answered by reviewing the sampling

theorem, which states the following |1]: A bandlimited signal having no spectral
components above f,, hertz can be determined uniquely by values sampled at
uniform intervals of

T, = sec (2.1)

2f

This particular statement is also known as the uniform sampling theorem. Stated
another way, the upper limit on 7, can be expressed in terms of the sampling rate,
deno ~ = 1/T.. The restriction, stated in terms of the sampling rate, is known as
e Nyqguist criterio The statement is

f, = 2f,, (2.2)

The sampling rate f, = 2f,, is also called the Nyquist rate. The Nyquist criterion is a
theoretically sufficient condition to allow an analog signal to be reconstructed com-
pletely from a set of uniformly spaced discrete-time samples. In the sections that
follow, the validity of the sampling theorem is demonstrated using different sam-
pling approaches.




2.4.1.1 Impulse Sampling

Here we demonstrate the validity of the sampling theorem using the fre-
quency convolution property of the Fourier transform. Let us first examine the
case of ideal sampling with a sequence of unit impulse functions. Assume an analog
waveform, x(¢), as shown in Figure 2.6a, with a Fourier transform, X(f), which 1s
zero outside the interval (- f,, < f<f,,), as shown in Figure 2.6b. The sampling of
x(f) can be viewed as the product of x(r) with a periodic train of unit impulse func-
tions x;(¢), shown in Figure 2.6¢ and defined as

e

xylt) = E 3(t - nTy) (2.3)
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where T, is the sampling period and () is the unit impulse or Dirac delta function
defined in Section 1,2.5. Let us choose T, = 172, so that the Nyquist criterion 15
just satisfied.

The sifting property of the impulse function (see Section A.4.1) states that

X(08(1 = 1,) = x(t,)8(t — £;) (2.4)

Using this property, we can see that x.(f), the sampled version of x(f) shown in
Figure 2 be. is given by

x,(t) = x(t)xglt) = 6t — nT,)
(2.5)

MH .MH

x(nT,)8(1 = nT,)
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Using the frequency convolution property of the Fourler transform (see Section
A.5.3), we can transform the time-domain product x(r)x;(7) of Equation (2.5} to the
frequency-domain convolution X(f) + X;(f), where



- LS 85— ) (26)

.':. n=—"%

is the Fourier transform of the impulse train x;(¢) and where f, = 1/T, is the sam-
pling frequency. Notice that the Fourier transform of an impulse train is another
impulse train; the values of the periods of the two trains are reciprocally related to
one another. Figures 2.6¢ and d illustrate the impulse train x;(¢) and its Fourier
transform Xj( f), respectively.

Convolution with an impulse function simply shifts the original function as
follows:

X(f) *8(f — nfs) = X(f — nfy) (2.7)
We can now solve for the transform X () of the sampled waveform:
X(f) = XF) = %) =X * | & 3 8F ~ nfy)
I ns= (2.8)
-+ 3 XU - )

We therefore conclude that within the original bandwidth, the spectrum X,(f) of
the sampled signal x,() is, to within a constant factor (1/7,), exactly the same as
that of x(¢). In addition, the spectrum repeats itself periodically in frequency every
f; hertz. The sifting property of an impulse function makes the convolving of an im-
pulse train with another function easy to visualize. The impulses act as sampling
functions. Hence, convolution can be performed graphically by sweeping the im-
pulse train X;(f) in Figure 2.6d past the transform |X(f)| in Figure 2.6b. This sam-
pling of |X(f)| at each step in the sweep replicates | X(f)| at each of the frequency
positions of the impulse train, resulting in | X,(f)|, shown in Figure 2.6f.



When the sampling rate is chosen, as it has been here, such thai f, = 2f,], each
spectral replicate is separated from each of its neighbors by a frequency band ex-
actly equal to f; hertz, and the analog waveform can theoretically be completely re-
covered from the samples, by the use of filtering. However, a filter with infinitely
steep sides would be required. It should be clear that 1I?|f3 > 2f,..|the replications will
move farther apart in frequency, as shown in Figure 2.7a, making it easier to per-
form the filtering operation. A typical low-pass filter characteristic that might be
used to separate the baseband spectrum from those at higher frequencies is shown
in the figure. When the sampling rate is reduced, such tha{ f, < 2f,,,|the replications
will overlap, as shown in Figure 2.7b, and some information will be lost. The
phenomenon, the result of undersampling (sampling at too low a rate), is called
aliasing. The Nyquist rate, f, = 2f,,, is the sampling rate below which aliasing occurs;
to avoid aliasing, the Nyquist criterion, f, = 2f,,, must be satistfied.

As a matter of practical consideration, neither waveforms of engineering in-
terest nor realizable bandlimiting filters are strictly bandlimited. Perfectly bandlim-
ited signals do not occur in nature (see Section 1.7.2); thus, realizable signals, even
though we may think of them as bandlimited, always contain some aliasing. These
signals and filters can. however. be considered to be “essentiallv” bandlimited. Bv

this we mean that a bandwidth can be determined bevond which the spectral com-
ponents are attenuated to a level that 1s considered negligible.
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Figure 2.7 Spectra for various sampling rates. (a) Sampled spectrum
(f, > 2f,). (b) Sampled spectrum (f, < 2f,).



this we mean that a bandwidth can be determined beyond which the spectral com-
ponents are attenuated to a level that is considered negligible.

2.4.1.2 Natural Sampling

Here we demonstrate the validity of the sampling theorem using the fre-
quency shifting property of the Fourier transform. Although instantaneous sam-
pling is a convenient model, a more practical way of accomplishing the sampling of
a bandlimited analog signal x(t) is to multiply x(¢), shown in Figure 2.8a, by the
pulse train or switching waveform x,(f), shown in Figure 2.8¢c. Each pulse in x,(¢)
has width T and amplitude 1/7. Multiplication by x,(f) can be viewed as the open-
ing and closing of a switch. As before, the sampling frequency is designated f;, and
its reciprocal, the time period between samples, is designated 7,. The resulting
sampled-data sequence, x,(¢), is illustrated in Figure 2.8e and 1s expressed as

x,(6) = x(0)x,(0) (2.9)

The sampling here is termed natural sampling, since the top of each pulse in the
x,(t) sequence retains the shape of its corresponding analog segment during the

pulse interval. Using Equation (A.13), we can express the periodic pulse train as a
Fourier series in the form

n=—9%

x,(t) = D c,el ™ (2.10)
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Figure 2.8 Sampling theorem using the frequency shifting property of the Fourier

transform.



where the sampling rate, f; = 1/T,, is chosen equal to 2f,. so that the Nyquist
criterion is just satisfied. From Equation (A.24)]c, = (1/T;) sinc (nT/T,)| where T is
the pulse width, 1/7 is the pulse amplitude, and

sin Ty
Yy

sincy =

The envelope of the magnitude spectrum of the pulse train, seen as a dashed line in
Figure 2.8d, has the characteristic sinc shape. Combining Equations (2.9) and (2.10)
yields

x, (1) = x(t) D, c,el?™s! (2.11)

The transform X (f) of the sampled waveform is found as follows:

X;(f)=@{x(r) > cﬂeﬁ“ﬂf} (2.12)

n=—a




For linear systems, we can interchange the operations of summation and Fourier
transformation. Therefore, we can write

X(f) = S e, Fx()e ™) (2.13)

="

Using the frequency translation property of the Fourier transform (see Section
A.3.2), we solve for X,(f) as follows:

Xe(f} - 2 EHX(f - Hf:r) {2=14)

n=-—

Similar to the unit impulse sampling case, Equation (2.14) and Figure 2.8f illustrate
that X,( f) is a replication of X(f), periodically repeated in frequency every f; hertz.
In this natural-sampled case, however, we see that X,(f) is weighted by the Fourier
series coefficients of the pulse train, compared with a constant value in the
impulse-sampled case. It is satisfying to note that in the limit, as the pulse width, 7,
approaches zero, ¢, approaches 1/7 for all n (see the example that follows), and
Equation (2.14) converges to Equation (2.8).



Example 2.1 Comparison of Impulse Sampling and Natural Sampling

Consider a given waveform x(¢f) with Fourier transform X(f). Let X,(f) be the
spectrum of x,, (), which is the result of sampling x(z) with a unit impulse train x;(7).
Let X.»(f) be the spectrum of x,,(7), the result of sampling x(¢) with a pulse train x, ()
with pulse width 7, amplitude 1/7, and period 7,. Show that in the limit, as T
approaches zero, X, (f) = X(f).

Solution
From Equation (2.8),
1

Xa(f) == XX = nf)

and from Equation (2.14),

e =]

Xsl{_f} = 2 C.er(f - ”fﬁ‘}

n=—0s

As the pulse with T — 0, and the pulse amplitude approaches infinity (the area of the
pulse remains unity), x,(f) — x3(¢). Using Equation (A.14). we can solve for ¢, in the
limit as follows:

T—l]

1 T2
= ? f .I;,l[f}&' jrmntl g g
5 T, /2

Since, within the range of integration, —7,/2 to T,/2, the only contribution of x5(1) 1s
that due to the impulse at the origin, we can write

l "-'r.-.'-".2
¢, = lim — f x,(r)e —fZmnfst gy
T, r

I |
Cu = d(t)e it = S
s o I

Therefore, in the limit, X, (f) = X,»( f) for all n.



2.4.1.3 Sample-and-Hold Operation

The simplest and thus most popular sampling method, sample and hold, can
be described by the convolution of the sampled pulse train, [x(f)x5(f)], shown in
Figure 2.6e, with a unity amplitude rectangular pulse p(r) of pulse width 7,. This
time, convolution results in the flarrop sampled sequence

x,(r) = p(r) * [x(t)x5(e)] : (2.15)
= p(r) * [x(r} > B — ”Ts}}

H=—30

The Fourier transform, X(f), of the time convolution in Equation (2.15) is the
frequency-domain product of the transform P(f) of the rectangular pulse and the
periodic spectrum, shown in Figure 2.6f, of the impulse-sampled data:

X(f) = P(f)@{x{r) S s - T}}

=—0oc

:P(f){){(f):k{% > a(f—n,fs)” (16

5 n=—oo
o

PO 3 3 XU - nf)

¥y = — 9

[

Here, P(f) is of the form T, sinc f7,. The effect of this product operation results in
a spectrum similar in appearance to the natural-sampled example presented in Fig-
ure 2.8f. The most obvious effect of the hold operation is the significant attenuation
of the higher-frequency spectral replicates (compare Figure 2.8f to Figure 2.6f),
which is a desired effect. Additional analog postfiltering is usually required to fin-
ish the filtering process by further attenuating the residual spectral components lo-
cated at the multiples of the sample rate. A secondary effect of the hold operation
is the nonuniform spectral gain P(f) applied to the desired baseband spectrum
shown in Equation (2.16). The postfiltering operation can compensate for this
attenuation by incorporating the inverse of P(f) over the signal passband.



2.4.2 Aliasing

Figure 2.9 is a detailed view of the positive half of the baseband spectrum and one
of the replicates from Figure 2.7b. It illustrates aliasing in the frequency domain.
The overlapped region, shown in Figure 2.9b, contains that part of the spectrum
which is aliased due to undersampling. The aliased spectral components represent
ambiguous data that appear in the frequency band between (f, - f,,) and f,,. Figure
2.10 illustrates that a higher sampling rate f';, can eliminate the aliasing by separat-

ing the spectral replicates; the resulting spectrum in Figure 2.10b corresponds to
the case in Figure 2.7a. Figures 2.11 and 2.12 illustrate two ways of eliminating
aliasing using antialiasing filters. In Figure 2.11 the analog signal is prefiltered so
that the new maximum frequency, f’,,, is reduced to f,/2 or less. Thus there are no
aliased components seen in Figure 2.11b, since f, > 2f”,,. Eliminating the aliasing
terms prior to sampling is good engineering practice. When the signal structure is
well known, the aliased terms can be eliminated after sampling, with a low-pass
filter operating on the sampled data [2]. In Figure 2.12 the aliased components are
removed by postfiltering after sampling; the filter cutoff frequency, f”,,. removes
the aliased components; f”,, needs to be less than (f, — f,,). Notice that the filtering
techniques for eliminating the aliased portion of the spectrum in Figures 2.11 and
2.12 will result in a loss of some of the signal information. For this reason, the sam-
ple rate, cutoff bandwidth, and filter type selected for a particular signal bandwidth
are all interrelated.
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Figure 2.9 Aliasing in the frequency domain. (a) Continuous signal
spectrum. (b) Sampled signal spectrum.
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Realizable filters require a nonzero bandwidth for the transition between the
passband and the required out-of-band attenuation. This is called the transition
bandwidth. To minimize the system sample rate, we desire that the antialiasing
filter have a small transition bandwidth. Filter complexity and cost rise sharply with
narrower transition bandwidth, so a trade-off is required between the cost of a
small transition bandwidth and the costs of the higher sampling rate, which are
those of more storage and higher transmission rates. In many systems the answer
has been to make the transition bandwidth between 10 and 20% of the signal band-
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0 For fom A 4
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Figure 2.11 Sharper-cutoff filters eliminate aliasing. (a) Continuous
signal spectrum. (b) Sampled signal spectrum.
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Figure 2.12 Postfilter eliminates aliased portion of spectrum. (a) Con-
tinuous signal spectrum. (b) Sampled signal spectrum.

width. If we account for the 20% transition bandwidth of the antialiasing filter, we
have an erigineer’s version of the Nyquist sampling rate:

fo = 2.2f, (2.17)

Figure 2.13 provides some insight into aliasing as seen in the time domain.
The sampling instants of the solid-line sinusoid have been chosen so that the sinus-
oidal signal is undersampled. Notice that the resulting ambiguity allows one to
draw a totally different (dashed-line) sinusoid, following the undersampled points.



Quantization
2.4.4 Signal Interface for a Digital System

Let us examine four ways in which analog source information can be described.
Figure 2.14 illustrates the choices. Let us refer to the waveform in Figure 2.14a
as the original analog waveform. Figure 2.14b represents a sampled version of
the original waveform, typically referred to as natural-sampled data or PAM
(pulse amplitude modulation). Do you suppose that the sampled data in Fig-
ure 2.14b are compatible with a digital system? No, they are not, because the
amplitude of each natural sample still has an infinite number of possible values; a
digital system deals with a finite number of values. Even if the sampling is flat-
top sampling, the possible pulse values form an infinite set, since they reflect all the
possible values of the continuous analog waveform. Figure 2.14c illustrates
the original waveform represented by discrete pulses. Here the pulses have flat
tops and the pulse amplitude values are limited to a finite set. Each pulse is ex-
pressed as a level from a finite number of predetermined levels; each such
level can be represented by a symbol from a finite alphabet. The pulses in Figure
2.14c are referred to as quantized samples; such a format is the obvious choice for
interfacing with a digital system. The format in Figure 2.14d may be construed as
the output of a sample-and-hold circuit. When the sample values are quantized to
a finite set, this format can also interface with a digital system. After quantization,
the analog waveform can still be recovered, but not precisely; improved re-
construction fidelity of the analog waveform can be achieved by increasing the
number of quantization levels (requiring increased system bandwidth). Signal
distortion due to quantization is treated in the following sections (and later in
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Figure 2.14 Amplitude and time coordinates of source data. (a) Origi-
nal analog waveform. (b) Natural-sampled data. (c) Quantized samples.
(d) Sample and hold.



2.6 PULSE CODE MODULATION

Pulse code modulation (PCM) is the name given to the class of baseband signals
obtained from the quantized PAM signals by encoding each quantized sample into
a_digital word [3].]The source information is sampled and quantized to one of L
levels; then each quantized sample is digitally encoded into an ¢-bit ({ = log, L)
codeword. For baseband transmission, the codeword bits will then be transformed
to pulse waveforms, The essential features of binary PCM are shown in Figure 2.16.
Assume that an analog signal x(f) is limited in its excursions to the range —4 to
+4 V. The step size between quantization levels has been set at 1 V. Thus, eight
quantization levels are employed; these are located at -3.5, -2.5, ..., +3.5 V. We
assign the code number 0 to the level at -3.5 V, the code number 1 to the level at
—2.5 V, and so on, until the level at 3.5 V, which is assigned the code number 7.
Each code number has its representation in binary arithmetic, ranging from 000 for
code number 0 to 111 for code number 7. Why have the voltage levels been chosen
in this manner, compared with using a sequence of consecutive integers, 1, 2,
3, ... 7 The choice of voltage levels is guided by two constraints. First, the quantile
intervals between the levels should be equal; and second, it is convenient for the
levels to be symmetrical about zero.
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Quantized sample value 1.5 3.5 2.5 0.5 -0.5 -2.5 -3.5
Code number 5 7 6 4 3 1 0
PCM sequence 101 111 110 100 011 001 000

Figure 2.16 Natural samples, quantized samples, and pulse code modulation.
(Reprinted with permission from Taub and Schilling, Principles of Communications
Systems, McGraw-Hill Book Company, New York, 1971, Fig. 6.5-1, p. 205.)



The ordinate in Figure 2.16 is labeled with quantization levels and their code
numbers. Each sample of the analog signal is assigned to the quantization level
closest to the value of the sample. Beneath the analog waveform x(r) are seen four
representations of x(¢), as follows: the natural sample values, the quantized sample
values, the code numbers, and the PCM sequence.

Note, that in the example of Figure 2.16, each sample is assigned to one of
eight levels or a three-bit PCM sequence. Suppose that the analog signal is a musi-
cal passage, which is sampled at the Nyquist rate. And, suppose that when we listen
to the music in digital form, it sounds terrible. What could we do to improve the fi-
delity? Recall that the process of quantization replaces the true signal with an ap-
proximation (i.e., adds quantization noise). Thus, increasing the number of levels
will reduce the quantization noise. If we double the number of levels to 16, what
are the consequences? In that case, each analog sample will be represented as a
four-bit PCM sequence. Will that cost anything? In a real-time communication sys-
tem, the messages must not be delayed. Hence, the transmission time for each sam-
ple must be the same, regardless of how many bits represent the sample. Hence,
when there are more bits per sample, the bits must move faster; in other words,
they must be replaced by “skinnier” bits. The data rate is thus increased, and the
cost 1s a greater transmission bandwidth. This explains how one can generally ob-
tain better fidelity at the cost of more transmission bandwidth.



2.7 UNIFORM AND NONUNIFORM QUANTIZATION
2.7.1 Statistics of Speech Amplitudes

Speech communication is a very important and specialized area of digital commu-
nications. Human speech is characterized by unique statistical properties; one such
property is illustrated in Figure 2.17. The abscissa represents speech signal magni-
tudes, normalized to the root-mean-square (rms) value of such magnitudes through
a typical communication channel. and the ordinate is probability. For most voice

| I |
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Speech signal magnitudes relative
to the rms of such magnitudes

Figure 2.17 Statistical distribution of
single-talker speech signal magnitudes.

Probability that abscissa value is exceeded



communication channels, very low speech volumes predominate; 50% of the time,
the voltage characterizing detected speech energy is less than one-fourth of the rms
value. Large amplitude values are relatively rare; only 15% of the time does the
voltage exceed the rms value. We see from Equation (2.18b) that the gquantization
noise depends on the step size (size of the quantile interval). When the steps are
uniform in size the quantization is known as uniform quantization. Such a system
would be wasteful for speech signals; many of the quantizing steps would rarely be
used. In a system that uses equally spaced quantization levels, the quantization
noise 1s the same for all signal magnitudes. Therefore, with uniform quantization,
the signal-to-noise (SNR) is worse for low-level signals than for high-level signals.
Nonuniform quantization can provide fine quantization of the weak signals and
coarse quantization of the strong signals. Thus in the case of nonuniform quantiza-
tion, quantization noise can be made proportional to signal size. The effect is to im-
prove the overall SNR by reducing the noise for the predominant weak signals, at
the expense of an increase in noise for the rarely occurring strong signals. Figure
2.18 compares the quantization of a strong versus a weak signal for uniform and
nonuniform quantization. The staircase-like waveforms represent the approxima-
tions to the analog waveforms (after quantization distortion has been introduced).
The SNR improvement that nonuniform quantization provides for the weak signal
should be apparent. Nonuniform quantization can be used to make the SNR a con-
stant for all signals within the input range. For voice signals, the typical input signal
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Figure 2.18 Uniform and nonuniform quantization of signals.
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2.8.2 PCM Waveform Types

When pulse modulation is applied to a binary symbol, the resulting binary wave-
form is called a pulse-code modulation (PCM) waveform. There are several types
of PCM waveforms that are described below and illustrated in Figure 2.22; in tele-
phony applications, these waveforms are often called /ine codes. When pulse modu-
lation is applied to a nonbinary symbol, the resulting waveform is called an M-ary
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Figure 2.21 Example of waveform representation of binary digits.
(a) PCM sequence. (b) Pulse representation of PCM. (c) Pulse wave-
form (transition between two levels).



pulse-modulation waveform, of which there are several types. They are described
in Section 2.8.5, where one of them, called pulse-amplitude modulation (PAM), is
emphasized. In Figure 2.1, the highlighted block, labeled Baseband Signaling,
shows the basic classification of the PCM waveforms and the M-ary pulse wave-
forms. The PCM waveforms fall into the following four groups.

1. Nonreturn-to-zero (NRZ)
2. Return-to-zero (RZ)

3. Phase encoded

4. Multilevel binary

The NRZ group is probably the most commonly used PCM waveform. It can
be partitioned into the following subgroups: NRZ-L (L for level), NRZ-M (M for
mark), and NRZ-S (S for space). NRZ-L is used extensively in digital logic circuits.
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A binary one is represented by one voltage level and a binary zero is represented
by another voltage level. There is a change in level whenever the data change from
a one to a zero or from a zero to a one. With NRZ-M, the one, or mark, is repre-
sented by a change in level, and the zero, or space, is represented by no change in
level. This is often referred to as differential encoding. NRZ-M i1s used primarily in



magnetic tape recording, NRZ-S is the complement of NRZ-M: A one is repre-
sented by no change in level, and a zero is represented by a change in level.

The RZ waveforms consist of unipolar-RZ, bipolar-RZ, and RZ-AMI. These
codes find application in baseband data transmission and in magnetic recording.
With unipolar-RZ, a one is represented by a half-bit-wide pulse, and a zero is rep-
resented by the absence of a pulse. With bipolar-RZ, the ones and zeros are repre-
sented by opposite-level pulses that are one-half bit wide. There is a pulse present
in each bit interval. RZ-AMI (AMI for “alternate mark inversion™) is a signaling
scheme used in telephone systems. The ones are represented by equal-amplitude
alternating pulses. The zeros are represented by the absence of pulses.

The phase-encoded group consists of bi-d-L (bi-phase-level), better known as
Manchester coding; bi-b-M (bi-phase-mark); bi-¢-S (bi-phase-space); and delay
modulation (DM), or Miller coding. The phase-encoding schemes are used in mag-
netic recording systems and optical communications and in some satellite telemetry
links. With bi-b-L, a one is represented by a half-bit-wide pulse positioned during
the first half of the bit interval; a zero is represented by a half-bit-wide pulse posi-
tioned during the second half of the bit interval. With bi-b-M, a transition occurs at
the beginning of every bit interval. A one is represented by a second transition one-
half bit interval later: a zero is represented by no second transition. With bi-$-S, a
transition also occurs at the beginning of every bit interval. A one is represented by
no second transition; a zero is represented by a second transition one-half bit inter-
val later. With delay modulation [4], a one is represented by a transition at the mid-
point of the bit interval. A zero is represented by no transition, unless it is followed
by another zero. In this case, a transition is placed at the end of the bit interval of
the first zero. Reference to the illustration in Figure 2.22 should help to make these
descriptions clear.



Many binary waveforms use three levels, instead of two, to encode the binary
data. Bipolar RZ and RZ-AMI belong to this group. The group also contains for-
mats called dicode and duobinary. With dicode-NRZ, the one-to-zero or zero-to-
one data transition changes the pulse polarity; without a data transition, the zero
level is sent. With dicode-RZ, the one-to-zero or zero-to-one transition produces
a half-duration polarity change; otherwise, a zero level is sent. The three-level duo-
binary signaling scheme is treated in Section 2.9,

One might ask why there are so many PCM waveforms. Are there really so
many unique applications necessitating such a variety of waveforms to represent
digits? The reason for the large selection relates to the differences in performance
that characterize each waveform [S]. In choosing a PCM waveform for a particular
application, some of the parameters worth examining are the following:

L. Dc component. Eliminating the dc energy from the signal’s power spectrum
enables the system to be ac coupled. Magnetic recording systems, or systems
using transformer coupling, have little sensitivity to very low frequency signal
components. Thus low-frequency information could be lost.

2. Self-Clocking. Symbol or bit synchronization is required for any digital com-
munication system. Some PCM coding schemes have inherent synchronizing
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Given an analog waveform that has been sampled at its Nyquist rate, f;, using natural
sampling, prove that a waveform (proportional to the original waveform) can be
recovered from the samples, using the recovery techniques shown in Figure P2.1.
The parameter mf, is the frequency of the local oscillator, where m is an integer.

x1(t)

xg(t) LPF ————— x¢(t)
Naturally
sampled PAM H(f)

cos (2rmmft)

Local fs Is
oscillator 2 2




2. Determine the number of quantization levels that are implied if the number of bits
per sample in a given PCM code is (a) 5; (b) 8; (¢) x.

*, Determine the minimum sampling ratc necessary to sample and perfectly recon-
struct the signal x(z) = sin (62801)/(6280¢).

4. . (a) A waveform that is bandlimited to 50 kHz is sampled every 10 ps. Show graphi-
cally that these samples uniquely characterize the waveform. (Use a sinusoidal ex-
ample for simplicity. Avoid sampling at points where the waveform equals zero.)

(b) If samples are taken 30 ps apart instead of 10 ps, show graphically that wave-
forms other than the original can be characterized by the samples.



