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Major Classes of Block Codes

Repetition Codes

Hamming Codes

Golay Code

BCH Codes

Reed-Solomon Codes

Walsh Codes

Others

BCH and RS codes are the most frequently used.



Classes of Linear Block Codes:
(n,1) Repetition Codes

;‘=1__} dH,,min =n, r=r2_lJ

0 = 0000000000000
I=II1I1I11111111
* These codes are relatively simple, very wastetul of
bandwidth, and are not widely used.
* A Direct-Sequence Spread-Spectrum system may be
viewed as an application of a repetition code.



Classes of Linear Block Codes:
Hamming Codes

n=2/ -1,
k=27 -1-],
2/ -1
2/
dH min = 3

r=1
« Example was presented in previous class.

7"

»

* Not mn widespread practical use.



Plot of BER vs. SNR for several Hamming codes
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FIGURE 5-23. Bit error rate versus E,/N, for Hamming codes with § = 3 through 7.



Notes on Hamming Code Performance

* Coding gain 1s achieved at high SNR
* BER 1s worse than uncoded system for low SNR
« Hamming code 1s not particularly powerful

— single error correction only



Classes of Linear Block Codes:
Golay Code

n=23 k=12, r=%, dem 7, =3

This 1s a special one-of-a-kind code with many

interesting properties. The Golay code 1s the only

non-trivial "perfect code":

~ 22 - #of codewords

— 223 #of possible binary vectors of length 23

— Every possible recerved vector lies within distance 3 of
exac':tly‘ cjn.e codeword: 212{1 .\ (2%} s (23} . (23}} _ 223

n=23 1s fairly short 1) \2) \3

— this code 1s no longer used much 1n practice. One practical
use: in Motorola pager system.



Plot of BER vs. SNR for Golay Code
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FIGURE 5-30. Bit error probability for Golay (23, 12) code.



Classes of Linear Block Codes:
BCH Codes

"Bose-Chaudhuri-Hocquenghem" - 1959

Very important and useful class of codes.

| J_1—
n=2/ -1, k=anyvalue, 7> 2 l k (guaranteed)

J
Widely used 1n satellite, wireless data links
Decoded with the Berlekamp-Massey Algorithm



BER vs. SNR for r=3/4 BCH Codes
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FIGURE 5-28. Bit errar probability for BCH codes with A = 3/4.



BER vs. SNR for r=1/2 BCH Codes
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FIGURE 5-27. Bit error probability for BCH codes with R = 1/2.
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BER vs. SNR for r=1/4 BCH Codes
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IGURE 5-26. Bit error probability for BCH codes with R =1/4.



Notes on BCH Code Performance

BCH Codes Exist for many values of »n,k

Large coding gains are possible for high SNR
Coding gain increases with »

Coding gain increases as rate » decreases (up to a
point)



Classes of Linear Block Codes:
Reed-Solomon (RS) Code

1962 - A generalization case of BCH codes Sk
n=2/ -1, k=any value, dH min =n—k+1, 1 =[ >

RS codes are Maximum Distance Separable - have
the largest possible distance for any code with the
same value of n & £

RS codes are constructed for nonbinary (M-ary)
symbol sets - frequently used with M-ary FSK.

|



Applications of Reed-Solomon Codes

* RS codes are used for data communications in
severely power-limited environments:
— deep-space communications
— mulitary communications systems in conjunction with
spread-spectrum
— Compact Disks
— Cellular Digital Packet Data Standard.



BER vs. SNR for RS Codes
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FIGURE 5-29. Bit error probability for Reed—Solomon codes with R = 1/2.
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Orthogonal (Walsh) Codes

H
- 2 2
Hadamard Matrices: H, :[l]ﬁHzHl T|H. HY

Examples: 11 -
Hy = { }Hil =

The code parameters in general will be (¢ 2% |

The minimum distance is given by  dy5q =7/2 = k-1

Spectral efficiency becomes very poor but energy
efficiency becomes good for large k&



Other Well-Known Classes of Block Codes

» Reed-Muller Codes

— discovered in mid-1950s

— first large class of codes to correct more than a single error

— used in Mariner deep space probes from 1969-1976

— no longer attractive when compared to BCH and RS codes
* Fire Codes

— usetul i correcting long bursts of errors

— sometimes used 1n magnetic data storage systems

— largely replaced by RS codes 1n recent applications



Modifications to Known Codes

* Many known codes can be modified by an extra code
symbol or deleting a symbol
— can create codes that approximate almost any desired rate
— can sometimes create codes with slightly improved
performance
* The resulting code can usually be decoded with only
slight modification to the decoding algorithm
* Sometimes modification process can be applied
multiple times 1n succession



Modifications to Known Codes

* Puncturing: delete a parity symbol
— (n,k) code -> (n-1.k) code

* Shortening: delete a message symbol
— (n,k) code -> (n-1.k-1) code

» Expurgating: deleting some subset of codewords
— (n.k) code -> (n,k-1) code



Modifications to Known Codes

« Extending: add an additional parity symbol
— (n,k) code -> (n+1.k) code

* Lengthening: add an additional message symbol
— (n.k) code -> (n+1.k+1) code

* Augmenting: add a subset of additional code words
— (n.k) code -> (n,k+1) code
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Probability of Codeword Error

We wish to compute the probability F.(g) thata
bounded distance decoder will fail

The decoder can correct up to, but not more than
t=(d 5 min —1)/2] errors

We assume that the probability of an individual

symbol error 1s p, and that symbol errors occur

independently

The symbol error probability p 1s determined from the

modulation type



Probability of Codeword Error (continued)

 If we send n bits, the probability of receiving a
specific pattern of 7 errors and »-i correct bits 1s:
i )n—z'

p-(1-p

( 1?} 7

e Thereare \i/ i!"(n—i)! distinct patterns of n bits
with 7 errors and »-7 correct bits, so the total
probability of rece1rving a pattern with with 7 errors 1s:

(}jpf (1-p)"~

3




Probability of Codeword Error (contfinued)

« Since we can correct any pattern of up to 7 errors,
the overall probability of codeword error 1s:

i=0~" i=t+1 F



Example:
Error Probability of (7,4) Hamming Code

* Assume we are using a (7,4) Hamming Code (=1).
* Assume p=0.001

» There are fewer terms, so 1t 1s easiest to compute the
summation:
- L (n e n—i _ L (7 1\ n—i
P(e)=1-2| |[p(1=p)" "=1-=21| [(0.001)(0999)" "
i=0 " i=0

v
L 7 1 6
=1-1-(0.999)" —7(0.001)*(0.999)
=1-0993-0.00696 =2 x 107>



Numerical Evaluation of P-(¢)

* May need to use higher numerical precision 1if we are
evaluating the form: P.(c)=1— £ ( fjp;’ (l—p)”_f

7 i=0""

* In general, (J can be very large and p’(1- p)"’

can be very small. You may need to evaluate them

jointly 1n order to avoid overflow or undertlow

(Matlab 1s pretty good about avoiding this)

* Frequently the term i=7+/ and the first few terms
thereafter are the most significant



Matlab Functions

* For evaluating n!: fact.m
function y=fact(n)
y=1;
for 1=1:n y=y*1; end;
7
I—): bmom.m
function y = binom(n.1);
y=tact(n)/(fact(1)*fact(n-1));

* For evaluating (



Example:
* Find the error probability of a (63.45) BCH code with
t=3 tor p=0.001.
— 1 term:
- EDU» Pc=0; p=0.001;

- EDU» for 1=4:4 Pc=Pc+binom(63.1)*p™ *(1-p)"(63-1);
end;

- Pc= 5.6152e-007
— 2 terms:
+ EDU» Pc=0; p=0.001;
- EDU» for 1=4:5 Pc=Pc+binom(63.1)*p™ *(1-p)"(63-1);
end;
- Pc= 5.6815e-007

— 3 terms: Pc= 5.6822e-007

Copyright 2002 — Brian D. Woerner and William H. Tranter



An Important Point about Ep/N,

* We frequently want to evaluate performance 1n terms
of Ep/N,

* When using coding, we send extra bits which contain
no mformation at all. In order to make a fair
comparison with uncoded systems, we must penalize
ourselves by the extra energy used to send those bits.

« We will need to replace E,/N, by rEp/N, in
all our error formulas for different modulation types



Example

* Suppose BPSK modulation 1s employed and we have
Ep/No=10dB  Find the probability of error both for
an uncoded system and for a system with a (63.45)
BCH code:

* Uncoded System: P, (e) = Q( /2E J =3.87%4e - 006

No

2rEy,
4\10 _

8 (63 63—1
P(e)~ X _}(7.86“0 )(1 786x10” )
=4~ 1 /%
= 22679-011

» Coded System: p= Q( J 7.8625¢ - 005



Relating Codeword Error Rate
and Bit Error Rate

It the codeword 1s correctly received, all bits will be
correctly received.
Note that the probability of recerving a block of 45
uncoded bits with no errors 1s:

EDU» 1-(1-3.8794e-006)"45

ans = 1.7456e-004
If a codeword 1s incorrectly decoded, a good
approximation 1s that 1/2 of the bits will be 1n error.
More exact analytical evaluation of bit error rate 1s
tedious for block codes.



