Home work (5)

Linear Block codes

1. The generator matrix for a linear binary code is

$$\mathbf{G} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- a) Express G in systematic [I|P] form.
- b) Determine the parity check matrix H for the code.
- c) Construct the table of syndromes for the code.
- d) Determine the minimum distance of the code.
- e) Demonstrate that the code word corresponding to the information sequence 101 is orthogonal to **H**.

2 Consider a (7, 4) code whose generator matrix is

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) Find all the codewords of the code.
- (b) Find H, the parity-check matrix of the code.
- (c) Compute the syndrome for the received vector 1 1 0 1 1 0 1. Is this a valid code vector?
- (d) What is the error-correcting capability of the code?
- (e) What is the error-detecting capability of the code?

3. Consider a systematic block code whose parity-check equations are

$$p_1 = m_1 + m_2 + m_4$$

$$p_2 = m_1 + m_3 + m_4$$

$$p_3 = m_1 + m_2 + m_3$$

$$p_4 = m_2 + m_3 + m_4$$

where m_i are message digits and p_i are check digits.

- (a) Find the generator matrix and the parity-check matrix for this code.
- (b) How many errors can the code correct?
- (c) Is the vector 10101010 a codeword?
- (d) Is the vector 01011100 a codeword?