Realization structures for FIR filters

The FIR filter is characterized by the transfer function, H(z), given by

Rea.l[zation structures are essentially block (or flow) diagram representations of the
different theoretically equivalent ways the transfer function can be arranged. In most
cases, they consist of an interconnection of multipliers, adders/summers and delay
elements. There are many FIR realization structures, but only those that are in com-
mon use are presented here,

Transversal structure

The wransversal (or tapped delay) structure is depicted in Figure 7.28, The input, x(n),
and output, yin), of the filter fos this structure are related simply by

In the ﬂg:wv. the symbol ' represents a delay of one sample of unit of time, Thas
#m = 1} is xin} delayed by ane sampie. In digital implementations, the boxes labelled

0 - (¥ = 1))

A= 1)

win)

=" could represent shift registers or more commonly memory locations in & RAM.
The transversal filter structure is the most popular FIR structure.

The output sample, w(n}, is a weighted sum of the present input, x{s), and & — |
previous samples of the input, that is x(n — 1) 10 xin — ¥}, For the transversal structure,
the computation of each output sample, win), requires

® N - | memory locations to store the & — 1 input samples,
= N memory locations to store the N coefficients,

® N muliplications, and

& N -1 additions.

Linear phase structure

A variation of the transversal structure is the linear phase structure which takes
advantage of the symmetry in the impulse response coefficients for lincar phase FIR
filters to reduce the computational complexity of the filter implementation.

In a linear phase filter, the coefficients are symmetrical, that is[h{n) = £0N —n— 1}, |
Thus the filter equation can be re-written to take account of this symmetry with a
consequent reduction in both the number of multiplications and additions. For type |
and 2 lincar phase filters, the transfer function can be written as

Py N1)

Ho = 3 ki sz h(LS eens vosa a0
waat

Hiz) = 3 hia)z" 4 z-¥-1-9) N even (7.408)
=

The ding di ions are given by

Walipiet
simd = ¥ hkMan = k) aln = (V=1 = 8)])
i

+ BIIN = 1)/2]xln = (N — 1)/2] (T4la)
Waapiiet
yin) = i kY (= &)+ aln = (N = 1 =)]} (7.41b)
=1

A comparison of Equations 7.39 and 7.41 shows that the lincar phase structure is com-
putationally more efficient, requiring approximately half the number of multiplica-
tions and itions. However, in most DSP processors Equation 7.39 leads to a more
efficient implementation, because the i age in Equation 7.41 is
lost in the more complex indexing of data implied.

A linear phase FIR fil -
ier has seven coefficients which are listed below. Deaw te| W0 = W) = ~0.032

realization diagrams for the filter wsin i
» . i, (&) direct (iransversal) and
strsctures. Compare their computational complexities. versal) and (b) linesr phase hil)=hiS)= 0.008

hi2) = hid) = 0.048
%) = 0048

T A

"}|

R4 PRS) TAGE)

i

Other structures

Fast convolutio

The fast convolution method involves performing the convolution operation of
Equation 7.39 in the frequency domain. As was discussed in Chapter 5, convolution in
the time domain is equivalent to multiplication in the frequency domain. In simple
terms, filtering here is performed by first computing the DFTs of x(n) and hiz)
(suitably zero padded), multiplying these together and then obtaining their inverse.
The concept is depicted in Figure 7.30. In practice, techniques known as overlap-add
and overlap—-save are used in real-time filtering. These are discussed in Chapter 5.

o} =
%. @ yim)

X&)

lEI Hik)

Figure 7.30 An illustration of fast convolution.

Frequency sampling structure

In the frequency sampling structure, the filters are characterized by the samples of the
desired frequency response, H(k), instead of its impulse response coefficients. This
case has already been discussed in detail. For narrowband filters, most of the frequency
samples will be zero, and so the resulting frequency sampling filter will require 2
smaller number of coefficients and hence multiplications and additions than an
equivalent transversal structure. A typical realization diagram is given in Figure 7.22

Transpose and cascade structures

The transpose structure is similar to the direct structure, except that the partial sums
feed into succeeding stages. This method is more susceptible to roundoff noise than
the direct method. In the cascade realization, the transfer function, H(z), is expressed
as the product of second-order and first-order sections. The transpose and cascade
structures are seldom used for FIR filters in current DSP implementations.

% Finite Vwordlength effect in FIR digital filters

In practice, FIR digital filters are often implemented using DSP processors (for
example the Texas Instruments TMS320C50), algorithmic-specific DSP chips de-

signed for FIR filtering (such as the INMOS A100) or, where high speed is desired,
building blocks of multipliers, memory elements, adders and controllers (for example
Plessey’s PDSP1600 family). In these cases, the number of bits used to represent
the input data to the filter and the filter coefficients and in performing arithmetic
operations must be small for efficiency and to limit the cost of the digital filter. The
problems caused by using a finife number of bits are referred to as finite wordlength
effects, and in general lead to a lowering of the performance of the filter.
In this section, we will discuss the cffects of finite wordlength on the performance
of FIR digital filters and suggest ways of minimizing these effects. The discussion will
centre on the direct form FIR structure as it is the most attractive FIR structure in

maodern signal processing, arld rounding will be used, being the simplest and mas
widely used method of

There are four ways in which finite wordlength affects the performance of FIR/
digital filters.

(1) ADC noise This is the familiar ADC quantization noise which results when
the filter input is derived from analog signals. ADC noise limits the signal-to-
noise ratio (SNR) obtainable. The effects can be reduced by using additional
bits, consistent with inherent signal noise (see Chapter 13), and/or by using
multirate techniques to enhance the signal to noise ratio (see Chapter 9).

(2} Coefficient quantization errors These result from representing filter
coefficients with a limited number of bits. This has the adverse effect of
madifying the desired fn.qurnc)' response. In the stophand of a filter, for

it Iurm.s the possible, thus allowing additional
signal tr A straightforward solution is to use enough bits to
p filter coeffici Hou-e\.er. pli iques allow efficient
selection of coefficients to mu i lengit

(3) Roundoff errors from quantizing results of arithmetic operations These can
occur, for example, by discarding the lower-order bits before storing the results
of a multiplication. This is normally forced on us by the wordlength of the
processor used. This error reduces the SNR and may be reduced by rounding
after double-length summing of products. The extent of the errors introduced
depends on the type of arithmetic used and the filter structure,

(4) Arithmetic overflow This occurs when partial sums or filter output exceeds
the permissible wordlength of the system. Essentially, when an overflow
occurs, the output sample will be wrong (normally the sign changes), A way
to reduce or avoid an overflow is to scale the filter coefficients by dividing
each coefficient by a factor such that the filter output sample never exceeds
the permissible wordlength. This is clearly at the cost of reduced signal to
noise ratio.

FIR digital filters implementation techniques

The difference equation for an FIR digital filter is given by

N=1
yim) = ¥ hik)x(n - &) (7.48)
d=0

The coefficients h{k) will have been obtained at the approximation stage, a suitable
structure chosen, and an analysis carried out o verify that the number of bits w0
be used w0 represent variables and in carrying out aritl i is ad
The final stage is to implement the filter, and the key issue here is essenu:dly w
i code and/or ization of the chosen filter structure. The
dlaussmlla here will be based on the 1] which is ch d by
Equation 7.48 as it is the most popular,
As exanumllun of r.he equatlon will show, the computation of ¥(n) involves only
ions, and delays. Thus, to implement a filter, we

need l|:= following busic components:

u memory (RAM) to store the present and past input samples, x(r) and x(n — &);
m memory (RAM or ROM) for storing the filter coefficients, the h(k);
- a 1tipli or hard 3H

w adders or arithmetic logic unit (ALU).

These components together with a means of controlling them constitute the digital
filter. If the source of the[input data is analog] then we need an ADC as well
Similarly, if the[output destination is analog fve need a DAC. Thus the structure of a
real-time filter|has the form depicted in Figure 7.34,

B-bit ADC i o
xin} Input wiml xin) Digital Y| Output
filter M”‘m"k processor DAC filter yin)

Figure 7.34 A sump]uﬁgd block diagram of & real-time digital filter with analog inpuat/

Filtering continuous-time signals using digital filters

.e—-—-m.sssw.a AvALote Mms ———v\

J | %
Ry H% ol P A [

h.,,.h.,.ﬁr_
i kk,\rp!-u‘w-\-

. hl
Qi) Ve Cua)e [guty M ar %Me«n?"
e 6. T3 ®

Gl - Y6, (e)
(m xu.-\-[wu ild'“i"L gt o B,

Tpeet tnh.h-uJu

yen sty Mt bt
\\\ ""'ﬁh'ﬂ'f"‘?-

Gra GJL) 1

A

ﬁ

A, e L S0

TG~
J\ /s T AN
'n'r' —_ -
l"l' — D
/ 7 o mrw?)-f -{ _'Il- Fadl _»H;F;;F
fecorte -
g LPF 5(..»?/_ G, lia>
et gmin T L e
-‘1%
T
< (‘J‘_“.) =5"l“ . G—P (S] —arg, < s -“-y_,‘,_
r - oL
e o
= L L J‘r“'d_ﬂ_
for 7 2q f“"}zﬂ.‘ A
s ety
- J fe-nT)
-z Jg. f - dn
Ea = s
T 5 gt wT ¥
T > -
2Ty, te-w. Db e mryfs
R A R

- a‘ dg., it T

.n.-r(f_..‘r%

AAA: anti aliasina attenuation

s_\hin’p&'a.

| Anti-Aliasing Filter (AAF) Design |

ARF dngn 4.3
—_ — PN ol
N
| a7
— i ._.f.__ *_}. —t-
L] AL S qn (N
e e B T
< ek ro)
Firte ! . o
L =
AA = 1248 T.;,gg-z.;,th,‘,,.,‘f

S P S BT e nak 4T ARA

@), we meed A nfaves

A2, w22, (] LR 13
T T e .
“ ';;/ 1, = Llirmints J?.T
I T

BWAB) o e need ";;* ot

JF AA,
/ o
R 2, =n-n
] T
7)
2> (.2 +/ }-l'?-.,
Bo= & sbor - %’—s [J?-,r;(.é‘tt)ﬂ'__\ = B3 e._
gt
i - | B
T T
| o
[or
v ~
) 7S
1 Jle™)
o v D A I
H et | l { \
7 —hea ! - . 1
: R BT E
e e Sl P - wm) - [ret %
H %M %: :._'_n_'r it
] N - ,,u'a;sA\.y‘-.,@m
y .
\ Fdtaired -u...»[n-,: i T STy
. g
| N P
e N\ Bem A o 2 e P20 - f5
N e
X e
diviy o Blee
B AAF

