Computer-Aided Design of

Digital Filters

- The FIR filter design techniques discussed so far can be easily implemented on a computer
- In addition, there are a number of FIR filter design algorithms that rely on some type of optimization techniques that are used to minimize the error between the desired frequency response and that of the computer-generated filter
- Basic idea behind the computer-based iterative technique
- Let $H\left(e^{j \omega}\right)$ denote the frequency response of the digital filter $H(z)$ to be designed approximating the desired frequency response $D\left(e^{j \omega}\right)$, given as a piecewise linear function of ω, in some sense

Objective - Determine iteratively the coefficients of $H(z)$ so that the difference between between $H\left(e^{j \omega}\right)$ and $D\left(e^{j \omega}\right)$ over closed subintervals of $0 \leq \omega \leq \pi$ is minimized
\qquad

- This difference usually specified as a \qquad weighted error function

$$
\mathcal{E}(\omega)=W\left(e^{j \omega}\right)\left[H\left(e^{j \omega}\right)-D\left(e^{j \omega}\right)\right]
$$

where $W\left(e^{j \omega}\right)$ is some user-specified
weighting function
\qquad

- Chebyshev or minimax criterion -

Minimizes the peak absolute value of the weighted error:

$$
\varepsilon=\max _{\omega \in R}|\mathcal{E}(\omega)|
$$

where R is the set of disjoint frequency bands in the range $0 \leq \omega \leq \pi$, on which $D\left(e^{j \omega}\right)$ is \qquad defined

Design of Equiripple

Linear-Phase FIR Filters

- The linear-phase FIR filter obtained by minimizing the peak absolute value of

$$
\varepsilon=\max _{\omega \in R}|E(\omega)|
$$

\qquad
is usually called the equiripple FIR filter

- After ε is minimized, the weighted error \qquad function $E(\omega)$ exhibits an equiripple behavior in the frequency range R
- The general form of frequency response of a \qquad causal linear-phase FIR filter of length
$2 M+1: \quad H\left(e^{j \omega}\right)=e^{-j M \omega} e^{j \beta} H(\omega)$
where the amplitude response $\bar{H}(\omega)$ is a real
\qquad function of ω
- Weighted error function is given by $\mathcal{E}(\omega)=W(\omega)[\bar{H}(\omega)-D(\omega)]$ \qquad
where $D(\omega)$ is the desired amplitude response and $W(\omega)$ is a positive weighting function
- Parks-McClellan Algorithm - Based on iteratively adjusting the coefficients of $\breve{H}(\omega)$ until the peak absolute value of $\mathcal{E}(\omega)$ is minimized
- If peak absolute value of $\mathcal{E}(\omega)$ in a band $\omega_{a} \leq \omega \leq \omega_{b}$ is ε_{o}, then the absolute error satisfies

$$
|\breve{H}(\omega)-D(\omega)| \leq \frac{\varepsilon_{o}}{|W(\omega)|}, \quad \omega_{a} \leq \omega \leq \omega_{b}
$$

\qquad
\qquad
\qquad

- For filter design,

$$
D(\omega)= \begin{cases}1, & \text { in the passband } \\ 0, & \text { in the stopband }\end{cases}
$$

- $\breve{H}(\omega)$ is required to satisfy the above desired response with a ripple of $\pm \delta_{p}$ in the passband and a ripple of δ_{s} in the stopband
- Thus, weighting function can be chosen either as

$$
\begin{aligned}
& W(\omega)=\left\{\begin{array}{cc|}
1, & \text { in the passband } \\
\delta_{p} / \delta_{s}, & \text { in the stopband }
\end{array}\right. \\
& \text { or } \\
& W(\omega)=\left\{\begin{array}{cc}
\delta_{s} / \delta_{p}, & \text { in the passband } \\
1, & \text { in the stopband }
\end{array}\right. \\
& \hline
\end{aligned}
$$

- Type 1 FIR Filter - $\breve{H}(\omega)=\sum_{k=0}^{M} a[k] \cos (\omega k)$
where \qquad
$a[0]=h[M], a[k]=2 h[M-k], \quad 1 \leq k \leq M$
- Type 2 FIR filter - \qquad
$H(\omega)=\sum_{k=1}^{(2 M+1) / 2} b[k] \cos \left(\omega\left(k-\frac{1}{2}\right)\right)$
where
$b[k]=2 h\left[\frac{2 M+1}{2}-k\right], \quad 1 \leq k \leq \frac{2 M+1}{2}$
- Type 3 FIR Filter $-\vec{H}(\omega)=\sum_{k=1}^{N / c} c[k] \sin (\omega k)$
where
$c[k]=2 h[M-k], \quad 1 \leq k \leq M$

phase FIR filters can be expressed as

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Modified form of weighted error function
$\mathcal{E}(\omega)=W(\omega)[Q(\omega) A(\omega)-D(\omega)]$

$$
=W(\omega) Q(\omega)\left[A(\omega)-\frac{D(\omega)}{O(\omega)}\right]
$$

\qquad

$$
=\widetilde{W}(\omega)[A(\omega)-\widetilde{D}(\omega)]
$$

where we have used the notation

$$
\begin{aligned}
\widetilde{W}(\omega) & =W(\omega) Q(\omega) \\
\widetilde{D}(\omega) & =D(\omega) / Q(\omega)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Optimization Problem - Determine $\widetilde{a}[k]$
\qquad which minimize the peak absolute value ε \qquad
of $\mathcal{E}(\omega)=\widetilde{W}(\omega)\left[\sum_{k=0}^{L} \widetilde{a}[k] \cos (\omega k)-\widetilde{D}(\omega)\right]$ \qquad
over the specified frequency bands $\omega \in R$
- Aftera $a k D$ has been determined, corresponding coefficients of the original A(ω) are computed from which (4 n D are \qquad determined
\qquad
\qquad
- Alternation Theorem - $A(\omega)$ is the best unique approximation of $\widetilde{D}(\omega)$ obtained by minimizing peak absolute value ε of $\mathscr{E}(\omega)=W(\omega)[Q(\omega) A(\omega)-D(\omega)]$ if and only if there exist at least $L+2$ extremal frequencies, $\left\{\omega_{i}\right\}, 0 \leq i \leq L+1$, in a closed subset R of the frequency range $0 \leq \omega \leq \pi$ such that $\omega_{0}<\omega_{1}<\cdots<\omega_{L}<\omega_{L+1}$ and $\mathscr{E}\left(\omega_{i}\right)=-\mathbb{E}\left(\omega_{i+1}\right),\left|\mathcal{E}\left(\omega_{i}\right)\right|=\varepsilon \quad$ for all i
- Consider a Type 1 FIR filter with an amplitude response $\boldsymbol{A}(\omega)$ whose approximation error $\mathscr{E}(\omega)$ satisfies the Alternation Theorem
- Peaks of $\mathcal{E}(\omega)$ are at $\omega=\omega_{i}, 0 \leq i \leq L+1$ where $d E(\omega) / d \omega=0$
- Since in the passband and stopband, $\widetilde{W}(\omega)$ and $D(\omega)$ are piecewise constant,

$$
\frac{d E(\omega)}{d \omega}=\frac{d A(\omega)}{d \omega}=0 \text { at } \omega=\omega_{i}
$$

- Using $\cos (\omega k)=T_{k}(\cos \omega)$, where $T_{k}(x)$ is the k-th order Chebyshev polynomial

$$
T_{k}(x)=\cos \left(k \cos ^{-1} x\right)
$$

- $A(\omega)$ can be expressed as

$$
A(\omega)=\sum_{k=0}^{L} \alpha[k](\cos \omega)^{k}
$$

which is an L th-order polynomial in $\cos \omega$

- Hence, $A(\omega)$ can have at most $L-1$ local minima and maxima inside specified passband and stopband
- At bandedges, $\omega=\omega_{p}$ and $\omega=\omega_{s},|E(\omega)|$ is a maximum, and hence $A(\omega)$ has extrema at these points
- $A(\omega)$ can have extrema at $\omega=0$ and $\omega=\pi$
- Therefore, there are at most $L+3$ extremal frequencies of $E(\omega)$
- For linear-phase FIR filters with K specified bandedges, there can be at most $L+K+1$ extremal frequencies
- The set of equations

| $\tilde{W}\left(\omega_{i}\right)\left[A\left(\omega_{i}\right)-\widetilde{D}\left(\omega_{i}\right)\right]=(-1)^{i} \varepsilon, 0 \leq i \leq L+1$ |
| :---: | :---: | :---: | :---: |

is written in a matrix form
$\left[\begin{array}{ccccc}1 & \cos \left(\omega_{0}\right) & \cdots & \cos \left(L \omega_{0}\right) & -1 / \tilde{W}\left(\omega_{0}\right) \\
1 & \cos \left(\omega_{1}\right) & \cdots & \cos \left(L \omega_{1}\right) & 1 / \tilde{W}\left(\omega_{1}\right) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & \cos \left(\omega_{L}\right) & \cdots & \cos \left(L \omega_{L}\right) & (-1)^{L-1} / \tilde{W}\left(\omega_{L}\right) \\
1 & \cos \left(\omega_{L+1}\right) & \cdots & \cos \left(L \omega_{L+1}\right) & (-1)^{L / W}\left(\omega_{L+1}\right)\end{array}\right]\left[\begin{array}{c}a[0] \\
\tilde{W}[1] \\
\vdots \\
a[L] \\
\hline\end{array}\right]=\left[\begin{array}{c}\tilde{D}\left(\omega_{0}\right) \\
\tilde{D}\left(\omega_{1}\right) \\
\vdots \\
\tilde{D}\left(\omega_{L}\right) \\
\tilde{D}\left(\omega_{L+1}\right)\end{array}\right]$

- The matrix equation can be solved for the unknowns $\widetilde{a}[i]$ and ε if the locations of the $L+2$ extremal frequencies are known a priori
- The Remez exchange algorithm is used to determine the locations of the extremal frequencies

Remez Exchange Algorithm

- Step 1: A set of initial values of extremal frequencies are either chosen or are available from completion of previous stage
- Step 2: Value of ε is computed using $\varepsilon=\frac{c_{0} D\left(\omega_{0}\right)+c_{1} D\left(\omega_{1}\right)+\cdots+c_{L+1} D\left(\omega_{L+1}\right)}{c_{0}}$

$$
\frac{1}{\mathscr{W}\left(\omega_{0}\right)}-\frac{1}{\tilde{W}\left(\omega_{1}\right)}+\cdots+\frac{1}{\tilde{W}\left(\omega_{L+1}\right)}
$$

where $\cos _{n=1}^{\infty+1} \frac{1}{\cos \left(\omega_{n}\right)-\cos \left(\omega_{i}\right)}$ By solving the matrix eq.

- Step 3: Values of $A(\omega)$ at $\omega=\omega_{i}$ are then computed using

$$
A\left(\omega_{i}\right)=\frac{(-1)^{i} \varepsilon}{\widetilde{W}\left(\omega_{i}\right)}+\widetilde{D}\left(\omega_{i}\right), \quad 0 \leq i \leq L+1
$$

- Step 4: The polynomial $A(\omega)$ is determined by interpolating the above values at the $L+2$ extremal frequencies using the Lagrange interpolation formula
- Step 4: The new error function

$$
\mathscr{E}(\omega)=\widetilde{W}(\omega)[A(\omega)-\widetilde{D}(\omega)]
$$

is computed at a dense set $S(S \geq L)$ of
frequencies. In practice $S=16 L$ is adequate
Determine the $L+2$ new extremal frequencies
from the values of $\mathscr{E}(\omega)$ evaluated at the dense set of frequencies.

- Step 5: If the peak values ε of $\mathcal{E}(\omega)$ are
equal in magnitude, algorithm has converged.
- Illustration of algorithm

Iteration process is stopped if the difference between the values of the peak absolute errors between two consecutive stages is less than a preset value, e.g., 10^{-6}

- Example - Approximate the desired function $D(x)=1.1 x^{2}-0.1$ defined for the range $0 \leq x \leq 2$ by a linear function $a_{1} x+a_{0}$ by minimizing the peak value of the absolute emror

$$
\max _{x \in[0.2]}\left|1.1 x^{2}-0.1-a_{0}-a_{1} x\right|
$$

- Stage 1

Choose arbitrarily the initial extremal points

$$
x_{1}=0, x_{2}=0.5, x_{3}=1.5
$$

- Solve the three linear equations

$$
a_{0}+a_{1} x_{\ell}-(-1)^{\ell} \varepsilon=D\left(x_{\ell}\right), \quad \ell=1,2,3
$$

\qquad
i.e., $\left[\begin{array}{ccc}1 & 0 & 1 \\ 1 & 0.5 & -1 \\ 1 & 1.5 & 1\end{array}\right]\left[\begin{array}{c}a_{0} \\ a_{1} \\ \varepsilon\end{array}\right]=\left[\begin{array}{c}-0.1 \\ 0.175 \\ 2.375\end{array}\right]$
for the given extremal points yielding
\qquad $a_{0}=-0.375, a_{1}=1.65, \varepsilon=0.275$

- Plot of $\mathcal{E}_{1}(x)=1.1 x^{2}-1.65 x+0.275$ along with values of error at chosen extremal points shown below

- Note: Errors are equal in magnitude and \qquad alternate in sign
- Stage 2
- Choose extremal points where $\mathcal{E}_{1}(x)$ assumes its maximum absolute values
- These are $x_{1}=0, x_{2}=0.75, x_{3}=2$
- New values of unknowns are obtained by solving

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0.75 & -1 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\varepsilon
\end{array}\right]=\left[\begin{array}{c}
-0.1 \\
0.5188 \\
4.3
\end{array}\right]
$$

$$
\text { yielding } a_{0}=-0.6156, a_{1}=2.2, \varepsilon=0.5156
$$

- Plot of $\boldsymbol{E}_{2}(x)=1.1 x^{2}-2.2 x+0.5156$ along with values of error at chosen extremal points shown below
\qquad

- Stage 3:
- Choose extremal points where $\mathbb{E}_{2}(x)$ assumes its maximum absolute values
- These are $x_{1}=0, x_{2}=1, x_{3}=2$
- New values of unknowns are obtained by solving

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & -1 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\varepsilon
\end{array}\right]=\left[\begin{array}{c}
-0.1 \\
1.0 \\
4.3
\end{array}\right]
$$

yielding $a_{0}=-0.65, a_{1}=2.2, \varepsilon=0.55$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Plot of $\mathcal{E}_{3}(x)=1.1 x^{2}-2.2 x+0.55$ along \qquad with values of error at chosen extremal points shown below \qquad

- Algorithm has converged as ε is also the
\qquad
\qquad maximum value of the absolute error
\qquad
\qquad
\qquad

