Computer-Aided Design of
Digital Filters
= The FIR filter design techniques discussed
implemented on a

so far can be easily
computer

= In addition, there are a number of FIR filter
design algorithms that rely on some type of
optimization techniques that are used to
minimize the error between the desired
frequency response and that of the
computer-generated filter

+ Basic 1idea behind the computer-based
iterative technique

+ Let H(e’®)denote the frequency response
of the digital filter H(z) to be designed
approximating the desired frequency
response D(e’®). given as a piecewise
linear function of ®. 1 some sense

= Objective - Determune iteratively the
coefficients of 7/(z) so that the difference
between between H (e’/®) and D(e’®) over
closed subintervals of 0 <®=T is
minimized
This difference usually specified as a
weilghted error function

E(®) =W (e!™)[H (/") —D(e’™)]
where W (e’/®) is some user-specified
weighting function
* Chebyshev or minimax criterion -

Minimgji the peak absolute value of the

welghted\ error:
2= max|£ (o)‘

where R is the set of disjoint frequency bands
in the range 0 < ® < 7, on which D(e’®) is
defined

Design of Equiripple
Linear-Phase FIR Filters

« The linear-phase I'IR filter obtained by
minimizing the peak absolute value of

&= 1‘nax|’£'((.a)‘
weR

is usually called the equiripple FIR filter
- After € is minimized. the weighted error
tunction E(w) exhibits an equripple
behavior in the frequency range R
* The general form of frequency response of a
causal linear-phase FIR filter of length
2MAM+1:

| H(e7®) = e M0 i (o) |
where the amplitude response H () is a real
function of @

* Weighted error function is given by

E(w) =W ()[H () — D(»)]

where D() is the desired amplitude
response and 7 (m)is a positive weighting
function




+ Parks-McClellan Algorithm - Based on
iteratively adjusting the coefficients of H(®)
until the peak absolute value of E(®) 1s
minimized

« If peak absolute value of E(®) in a band
0, <O<Is €, then the absolute error
satisties

‘H(m) fD(co)| < % . 0, <0<,

W(w)

For filter design,
I, in the passband
D(w)=

0, 1n the stopband
H(o) is required to satisty the above desired
response with a ripple of 8, in the
passband and a ripple of 8, in the stopband

Thus, weighting function can be chosen
either as

1, in the passband
(o) =1_ :
8, /6,. 1nthestopband
or
W () = B,/ Sp s i.n the passband
L in the stopband

Type 1 FIR Filter - H(®) = ga[k]cos(mk)
where £=0

al[0]=h[M], alk]=2h[M —k]. 1<k<M
Type 2 FIR filter -

~ (2M+1)/2
H®= < b[k]cos(m(kf%))

where
Blk]=2h[2M=1 ], 1<) <2M+l

Type 3 FIR Filter { H(w) = 3 c[k]sin(wk)
where L=

Ak =2h[M —k]. 1=sk<M

Type 4 FIR Filter -

_ (CM+D/2 . 2
H(w) = > d[k]51n(c-3(k =5 ]
wher =

dlk]= 2R k] 1< k<2




« Amplitude response for all 4 types of linear-
phase FIR filters can be expressed as

o

wherd X
[ L for Type |
lcos(@/2), for Type 2
()= s
sinfm),  for Type 3
|sin(a/2). for Type 4
and with

M., forTypel

L \
A(w)= Yalk]eos(oky |
k=i

where 4/;,4 k], for Typel
b[k). for Type 2

rf'[ff]=’-._[ _] : __p

clk], for Type3 : ’ .
; blk]. e[k]. and d[k]. are related to B[K],

d[k]. for Typed o1’ dfk]. respectively

M for Type 2

.!I-—J, for Tvpe 3
241

for Tvpe 4

* Modified form of weighted error function
E(0) =W (0)[Q(0)A(0) — D(®)]
= 7 (@) Q) A(®) ~ 5]
| = (o) 4(o) - D(o)]
where we have used the notation

7 (@) = 7 ()Q(0)
D(®) = D(®)/ O(e)

+ Optimization Problem - Determine a[k]
which minimize the peak absolute value ¢

of;

i~ L —~
E(o)=W(o)| Xa[klcos(mk) - D(®)]
k=0
over the specified frequency bands ® e R

) has been determined,
corresponding coetficients of the original

(A(®)are computed from which are
determine




» Alternatipn Theorem - A(®) is the best
unique approximation of D(®) obtained by
minimizin cak absolute value £ of

E() = W (@)[Q(@)A() — D(w)]
1f and only if there exist at least Z+2
extremal frequencies, {®;}, 0<i<L+1,

in a closed subset R of the frequency range
O<wm=mn suchthat ®g <, <---<®z <®z,;
and €(w;) = —E(®;,,). |[E(®;)|=& foralli

« Consider a Type 1 FIR filter with an
amplitude response A(®) whose
approximation error E(w) satisfies the
Alternation Theorem
Peaks of E(w) areat @ =;. 0<i< L +1
where dE(®)/dwn=0
Since in the passband and stopband. 7 (w)
and D(w) are piecewise constant,

dE(®) dAd(w)

do do

=0 at o =,

» Using cos{mk) = T (cosm). where T, (x) 1s
the fr-th order Chebyshev polynomial
T (x)= cos{_kcos'l x)

.

A(m) can be expressed as
A(w) =3 F_ya[kl(cosm)”

which is an Lth-order polynomial in coso

* Hence, 4() can have at most L —1 local
minima and maxima inside specified
passband and stopband

At bandedges, m=m, and o =a,, |-£(m)| is

a maximum, and hence 4(w) has extrema at

these points

* A(w)can have extremaal @=0and o=

* Therefore, there are at most L+3 extremal
frequencies of E(m)

* For linear-phase FIR filters with K specified

bandedges. there can be at most L+K+1

extremal frequencies

* The set of equations
W (0,)[A(w;) — D(w;)] = (~1)e, 0=i=L+1

15 wrilten m a matnx form

1 cos(mg) <+ cos(Log) 1/ W (tag ) afo]] 1‘.){(-10}
1 cos{oy) -+ cos{Loy) 1P (o) af) Do)
1 cos(eaz) v cos(Leng) (=DFVP(ep) || #1L] f}(mL}
1 cos(eop ) o+ cos(lop ) (=105 P ) | | Diog )

* The matrix equation can be solved for the
unknowns d[7] and £ if the locations of the
L+2 extremal frequencies are known a
priori

* The Remez exchange algorithm is used to
determine the locations of the extremal
tfrequencies




Remez Exchange Algorithm
= Step 1: A set of initial values of extremal
frequencies are either chosen or ar

available from completion of previous stage

= Step 2: Value of £ is computed using

Co(g )+ ey DNy +---+ ey (D(op )
- = L+l
9 9 T G ST TS
W (wy) () W, . )

1

where By solving the matrix eq.
* Step 3: Values of A(®) at ® = ®; are then
computed using

A(©) ==——+D(e»;). 0<i<L~+1

« Step 4: The polynomial A(w) is determined
by interpolating the above values at the Z+2
extremal frequencies using the Lagrange
interpolation formula

+ Step 4: The new error function
| (@) = 7 (@) 4(e) — D(o)] |

is computed at a dense set S (S > L) of
frequencies. In practice S = 16L 1s adequate.
Determine the L+2 new extremal frequencies
from the values of &(w) evaluated at the
dense set of frequencies.

= Step 5: If the peak values € of E(w) are
equal in magnitude, algorithm has converged.
Otherwise, go back to Step 2.

+ Ilustration of algorithm

i Iteration process is
; stopped if the
difference between
the values of the
peak absolute errors
il between two

e g A consecutive stages is
hca T T S less than a preset

&
10

value, e.g.,

= Example - Approximate the desired
tunction D(x) =1.1x> — 0.1 defined tor the
range 0 < x <2 by a linear function a,x + a,
by minimizing the peak value of the
absolute error
max, ‘l Ax? —0.1—a, — a1x| |
=[0.2]

Stage 1:
Choose arbitrarily the initial extremal points
x; =0, x, =05, x5 =1.5

» Solve the three linear equations
ap +ax, —(—1)'e=D(x,), (=123

Le. 1 o 1] a0 —0.1
1 05 —1|a |=|0175
1 15 1| & 2375

for the given extremal points yielding
a, =—0.375. a, =1.65, £ =0.275




» Plot of E(x)=1.1x> —1.65x+0.275 along
with values of error at chosen extremal
points shown below
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= Note: Errors are equal in magnitude and
alternate in sign
« Stage 2:
* Choose extremal points where Z, (x)
assumes its maximum absolute values
* These are x; =0, x, =0.75, x; =2
» New values of unknowns are obtained by
solvin,
€1 o 1 ao —0.1
1 075 —1| a |=|0.5188
1 2 1
vielding a, =—0.6156.a, =2.2, £ =0.5156

Plot of ZE,(x) =1.1x> —2.2x+0.5156 along
with values of error at chosen extremal
points shown below
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Stage 3:

Choose extremal points where E, (x)
assumes its maximum absolute values

These are x; =0, x, =1, x; =

New values of unknowns are obtained by

solving
1 0 1 ||% —0.1
1 1 —1|a|=| 1.0
1 2 1 & 4.3

vielding a, =—-0.65,a, =22, £=0.5

h

* Plot of E,(x)=1.1x* —22x+0.55 along
with values of error at chosen extremal
points shown below
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X
» Algorithm has converged as & 1s also the
maximum value of the absolute error




