Types of Transfer Functions

* The time-domain classification of an LTI
digital transfer function sequence is based
on the length of its impulse response:

- Finite impulse response (FIR) transfer
function

- Infinite impulse response (IIR) transfer
function

Types of Transfer Functions

+ In the case of digital transfer functions with
frequency-selective frequency responses,
there are two types of classifications

« (1) Classification based on the shape of the
magnitude function |H (e/®)|

* (2) Classification based on the the form of
the phase function 8(m)

Classification Based on
Magnitude Characteristics

* One common classification is based on an
ideal magnitude response

+ A digital filter designed to pass signal
components of certain frequencies without
distortion should have a frequency response
equal to one at these frequencies, and
should have a frequency response equal to
zero at all other frequencies




Ideal Filters

= The range of frequencies where the
frequency response takes the value of one is
called the passband

= The range of frequencies where the
frequency response takes the value of zero
is called the stopband

* Frequency responses of the four popular types
of ideal digital filters with real impulse
response coefficients are shown below:

Hopie™y Hophe™3
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Ideal Filters

= Lowpass filter: Passband - 0=w=wm,
Stopband -®,. <®m=T
= Highpass filter: Passband - o, =w=mw
Stopband - 0 = w < w,
= Bandpass filter: Passband - o, S o= om.>
Stopband - 0= w=w, and w.; <wm=mn
Stopband - o) < m < w2

Passband -0=w=w, and ®. =®m=7

* The frequencies o, .o, .
the cutoff frequencies

and o, are called

An ideal filter has a magnitude response
equal to one in the passband and zero in the
stopband, and has a zero phase everywhere

Earlier in the course we derived
DTFT of the frequency respons
of the ideal lowpass filter:

sin w1
hypln]= o, —m<n<w
i

We have also shown that the above impulse
response is not absolutely summable, and
hence, the corresponding transfer function
is not BIBO stable

= Also, iy p[n] is not causal and is of doubly
imfinite length

.

The remaining three ideal filters are also
characterized by doubly infinite, noncausal
impulse responses and are not absolutely
summable

Thus, the ideal filters with the ideal “brick
wall™ frequency responses cannot be
realized with finite dimensional LTI filter




= 1o develop stable and reahzable transter
functions, the ideal frequency response
specifications are relaxed by including a
transition band between the passband and
the stopband

* This permits the magnitude response to
decay slowly from its maximum value in
the passband to the zero value in the
stopband

« Moreover, the magnitude response is
allowed to vary by a small amount both in
the passband and the stopband

* Typical magnitude response specifications
of a lowpass filter are shown below
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Bounded Real Transfer
Functions

» A causal stable real-coefficient transfer
function H(z) is defined as a bounded real
(BR) transfer function if

| |H(e/”)|<1 for all values ofw|

+ Let x[n] and y[n] denote, respectively, the
input and output of a digital filter
characterized by a BR transfer function H(z)
with X(e/®) and Y(e/”) denoting their
DTFTs

jn

» Then the condition |H(e¢’")|<1implies that

2

Y(e™) < X(e/®)

Integrating the above from —n to x, and
applying Parseval’s relation we get

T - L a4

Ylvnl" < Y |x[n]”
N=—u n=—uw
Thus, for all finite-energy inputs, the output
energy is less than or equal to the input
energy implying that a digital filter
characterized by a BR transfer function can
be viewed as a passive structure

o« If|H(e’™)|=1, then the output energy is
equal to the input energy. and such a digital
filter is therefore a lossless system




» Example — Consider the causal stable ITR

transfer function

Hiz)= i
l—az

where K 1s a real constant

O<lali<]

" 2

K2
=

(I+a”)-2acosm
= E = T

» The maximum value of |H(e/®)|" is
obtained when 2a.cosw in the denominator
15 a maximum and the minimum value 1s
obtained when 2o cosm is a minimum

H(e’™) =H(HEYH =

__(ij

* For a = 0, maximum value of 2a.cosw is
equal to 2a at @ = 0, and minimum value is
— 2o atm=1

 Thus, follg > 0] the maximum value of

|H (/)" is equal to K~ /(l—a)” at =0

and the minimum value is equal to
K2 /(1 +u.)2 at m=Tm

= On the other hand, for[a < 0] the maximum
value of 2acosw isequalto —2a ato=m
and the minimum value is equal to 2a at @
=0

* Here, the maximum value of |H(e/")
equal tol K2 /(1—a)? at © = mjand the

minimum value is equal to|K~ /(1—a)” at
[o=0]

* Hence. the maximum value can be made
equal to 1 by choosing K =+(1—a). in
which case the minimum value becomes
(—a)* /(1 +a)?

2.
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« Hence

H(z)= i
l—az
is a BR function for K =%(1-a)
« Plots of the magnitude function for e =%0.5
with values of K chosen to make H{(z) a BR
function are shown on the next slide
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Allpass Transfer Function

Definition
* An IIR transfer function 4(z) with unity
magnitude response for all frequencies, i.e.,
AP =1, forall®
is called an allpass transfer function
» An M-th order causal real-coefficient
allpass transfer function is of the form

~_l ~_JM+I
Ay()=% dy tdy_z~ +-+d;z

+ Z—M

- 1 —M+l —M
l‘+‘ﬂi[.:. +"‘+£f“.‘(1_|- +dw...

= If we denote the denominator polynomials
of Ay, (2) as Dy (2):
Dy (z)=1+djz7 +.o ot JA_,_‘:_‘“*' +z.~’M:_”

then it follows that 4, (=) can be written as:

Note fron
pole of a real coefficient allpass transfer
function, then it has a zero at z = Le=/®

» The numerator of a real-coefficient allpass
transfer function is said to be the mirror-
image polynomial of the denominator, and
vice versa

« We shall use the notation D, (z) to denote
the mirror-image polynomig of a degree-M
polynomial Dy, (z), i.e.,

= The expression
o1 ':_)__'_:_'"H_”[:_
A xS ()
implies that the poles and zeros of a real-
coefficient allpass function exhibit mirror-

1
)

image symmetry in the z-plane

-0.2+0,1827 + 0422

4:(2) = 5
% 140471 40,1872 - 0,22

15 i L ¥ 3
T . - Fooy . P
= To show that [4,,(e’/”)|=1 we observe that
M -
e EP RN XY
Aagler =t n\,(‘:!-’:
= Therefore '
=M Das (271 2M Dy (2
A z)A4, z=ly== M= = ML
ar (2 Ay € ) Dy () Dy (z71)

* Hence
| Aps (@72 = Apr (2)Apg (=7 N e




* Now, the poles of a causal stable transfer
function must lie inside the unit circle in the
z-plane

» Hence, all zeros of a causal stable allpass
transfer function must lie outside the unit
circle in a mirror-image symmetry with its
poles situated inside the unit circle

= Figure below shows the principal value of
the phase of the 3rd-order allpass function

—0.2+0.18z" +0.4272 4 =3

. 14042714 0,182-2 —0.2273 .

+ Note the discontinuity by the amount of 27
in the phase 0(w)

Az(2)=

5 2" 03 a [} [T [
= If we unwrap the phase by removing the
discontinuity, we arrive at the unwrapped
phase function @.(wm) indicated below
= Note: The unwrapped phase function is a
continuous function of wm

* The unwrapped phase function of any
arbitrary causal stable allpass function is a
continuous function of @

Properties

* (1) A causal stable real-coefficient allpass
transfer function is a lossless bounded real
(LBR) function or, equivalently. a causal
stable allpass filter is a lossless structure

* (2) The magnitude function of a stable
allpass function A(z) satisfies:

<1, for|z{>1
|[A(z)y=1. for z.=1
>1, for|zj<l

» (3) Let t(®) denote the group delay function
of an allpass filter A(z), 1.e..

[0, ()]

d
Hw)= _do




+ The unwrapped phase function 0,.(w)of a
stable allpass function is a monotonically
decreasing function of @ so that t(w) is
everywhere positive inthe range 0 <o <n

* The group delay of an M-th order stable
real-coefficient allpass transfer function
satisfies:

:[ (w)o = Mn
0

Allpass Transfer Function

A Simple Application

+ A simple but often used application of an
allpass filter is as a delay equalizer

+ Let G(z) be the transfer function of a digital
filter designed to meet a prescribed
magnitude response

{ The nonlinear phase response of G(z) can bgle
corrected by cascading it with an allpass
filter A(z) so that the overall cascade has a
constant group delay in the band of interest

4 A)

—i  Gi2) ‘

» Since |4(e’®)|=1, we have
IG(e"*) A(e”)|=|G ()

* Overall group delay is the given by the sum
of the group delays of G(z) and A(z)




= Example — Figure below shows the group
delay of a 4™ order elliptic filter with the
following specifications: w, =0.3m
5,=1dB, 5,=35dB

g iy, igien

Figure below shows the group delay of the
original elliptic filter cascaded with an 8"
order allpass section designed to equalize
the group delay in the passband

Cireugs Evny Expanit e Filen

(2) Classification based on the the form of
the phase function 8(w)

+ A second classification of a transfer
function is with respect to its phase
characteristics

+ In many applications, it is necessary that the
digital filter designed does not distort the
phase of the input signal components with
frequencies in the passband

Zero-Phase Transfer Function

» One way to avoid any phase distortion is to
make the frequency response of the filter
real and nonnegative, i.e., to design the
filter with a zero phase characteristic

» However, it is not possible to design a
causal digital filter with a zero phase




» For non-real-time processing of real-valued
input signals of finite length, zero-phase
filtering can be very simply implemented by
relaxing the causality requirement

One zero-phase filtering scheme is sketched
below

dn)— H@ — vl utn) —] HE) |—vin]

uln] = v[-n]. y[n]=w{-n]

« It is easy to verify the above scheme in the
frequency domain

* Let X(e/®), V(e/®) ,U(e/®),W(e/®), and
Y(e/) denote the DTFTs of x[n], v[n],
u[n], win], and y[n], respectively

» From the figure shown earlier and making
use of the symmetry relations we arrive at
the relations between various DTFTs as
given on the next slide

[
] .| Hiz) == vin] ufn] 'i Hi,.’}_' - win]

uln]=v[=n].  ylnl=w{-n]
V(e/®)=H(e/*)X(e/®), W(e/®)=H(e/®)(e/®
Uefo)=V¥(el®),  Y(ef®)=H(elo)
« Combining the above equations we get
Y(e/®)=W*(e!®) = H *(e/°)U *(e/®)
= H*(e/®)V(e/) = H*(e/®) H(e/?) X(e/?)
41 =|H (e/® )2 X(e/®)




* The function £il1tfilt implements the
above zero-phase filtering scheme

« In the case of a causal transfer function with

a nonzero phase response, the phase
distortion can be avoided by ensuring that

the transfer function has a unity magnitude

and a linear-phase characteristic in the
frequency band of interest

» The most general type of a filter with a
linear phase has a frequency response given
by

H(e/®) = e=JoD |
which has a linear phase from® =0to ® =
2n
« Note also H(e/™) =1
(w)=0D

Linear-Phase Transfer
Function
» The output y[n] of this filter to an input
x{n]= Ael®" is then given by
| y[n] = de~J®Pejon = foion-D) |

* If x,(¢#) and y, () represent the continuous-

time signals whose sampled versions,
sampled at 1 = nT, are x[n] and y[n] given

above, then the delay between x, (1) and y, ()

is precisely the group delay of amount D

10



« If D is an integer, then y[n] is identical to
x[n], but delayed by /) samples

= If [2 is not an integer, y[#n]., being delayed by
a fractional part, is not identical to x[#]

In the latter case, the waveform of the
underlying continuous-time output is
identical to the waveform of the underlying
continuous-time input and delayed /2 units
of time

= Ifit is desired to pass input signal
components in a certain frequency range
undistorted in both magnitude and phase,
then the transfer function should exhibit a
unity magnitude response and a linear-phase
response in the band of interest

* Figure below shows the frequency response
if a lowpass filter with a linear-phase
characteristic in the passband

o
E” Lele '1

-n 0 we n

Copyright © 2008, 5. K. Mitrs

* Since the signal components in the stopband
are blocked, the phase response in the
stopband can be of any shape

+ Example - Determine the impulse response
of an ideal lowpass filter with a linear phase
response:

0, 0, SOST
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Applying the frequency-shifting property of
the DTFT to the impulse response of an
ideal zero-phase lowpass filter we arrive at
hypln]= sino.(n—n, )‘ R
w(n—n,)
As before, the above filter is noncausal and
of doubly infinite length, and hence,
unrealizable
By truncating the impulse response to a
finite number of terms, a realizable FIR
approximation to the ideal lowpass filter
can be developed
The truncated approximation may or may
not exhibit linear phase, depending on the
value of n, chosen

If we choose n,= N/2 with N a positive
integer, the truncated and shifted
approximation

hppln]= Smr::;(_”; :?;2)‘ 0<n<N

will be a length N+1 causal linear-phase
FIR filter

Al

Figure below shows the filter coefficients
obtained using the function sinc for two
different values of N

Ne |2 N=13
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Chapter 9

Digital Filter Design

* Objective - Determination of a realizable
transfer function (;(z) approximating a
given frequency response specification is an
important step in the development of a
digital filter

If an 1IR filter is desired. ((z) should be a
stable real rational function

Digital filter design is the process of
deriving the transfer function G(z)

Digital Filter Specifications
» For example, the magnitude response |G (e’™)
of a digital lowpass filter may be given as
mdicated below

Py

[ prosansnacs

= As indicated in the figure, in the passband,
defined by 0= w= @, we require that
G(e’”) =1 with an error =+ 5_,,. i.e.,

1-8, <|G(e’")=1+8,. |[w=w,

In the stopband, defined by, = ®w=mn, we
require that|G(¢/”) =0 with an error §,.

ie.,
G(e!™)=8,. w,=s|lo=mn

+ m,- passband edge frequency

’f?

+ @, - stopband edge frequency

= &, - peak ripple value in the passband

* &, - peak ripple value in the stopband

* Since (;(¢/”) is a periodic function of w,
and |G(e’")| of a real-coefficient digital
filter is an even function of ®

+ As a result, filter specifications are given
only for the frequency range 0<w<nx

Specifications are often given in terms of
loss function A(w)=-20log,,|G(e’”)| in
dB
Peak passband ripple
o, =—20log,,(1-8,) dB
Minimum stopband attenuation
o, =—20log,,(5,) dB

13



= Magnitude specihications may alternately be
given in a normalized form as indicated
below

= Pt - Sacpiumt -

Here, the maximum value of the magnitude
in the passband is assumed to be unity

1/+1+ g2 - Maximum passband deviation,
given by the minimum value of the
magnitude in the passband

1

- Maximum stopband magnitude

= For the normalized specification, maximum
value of the gain function or the minimum
value of the loss function 1s 0 dB
* Maximum passband attenuation -
\
5
Oy = 20log p\V1+e” ) dB
= For &, <<, it can be shown that
C"muxl = _20]02il|(] = 26,‘,)('_“3
* In practice, passband edge frequency 7,
and stopband edge frequency F; are
specified in Hz
» For digital filter design. normalized
bandedge frequencies need to be computed
from specifications in Hz using

Q, 2nF, o

O === - =27:f<‘,,f
g, o

w, =2 ="0 _onpT
Fy Fy

Digital Filter Specifications

* Example - Let F, =7 kHz, F, =3 kHz, and
F, =25 kHz
* Then
_2r(7x10°)
P7 25x10°
_27(3x10%)
~25x10°

=0.56n

=0.24n

5
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Selection of Filter Type
= The transfer function A(z) meeting the
frequency response specifications should be
a causal transfer function
= ForllR d

function is a real ra

al filter design, the IR transfer

al function of =

= —M
iy =LoY P1Z e 2 T st ) T £

= M<N
dog+diz" +daz

Zdheetdyz

= H{(=) must be a stable transfer function and
must be of lowest order & for reduced

1 computational complexity

= For FIR digital filter design. the FIR
transfer function is a polynomial in =7}
with real coefficients:

H(z)= 'Eh[n]:: i

s}

For reduced computational complexity.

degree NV of H(z) must be as small as

possible

If a linear phase is desired. the filter

coefficients must satisfy the constraint:
[ alp1=tninv —pl

« Advantages in using an FIR filter -
(1) Can be designed with exact linear phase,

(2) Filter structure always stable with
quantized coefficients

Disadvantages in using an FIR filter - Order
of an FIR filter, in most cases, is
considerably higher than the order of an
equivalent IIR filter meeting the same

specifications, and FIR filter has thus higher

computational complexity

Digital Filter Design:
Basic Approaches

Most common approach to 1R filter design -
(1) Convert the digital filter specifications
into an analog prototype lowpass filter
specifications

(2) Determine the analog lowpass filter
transfer function A (~)

(3) Transform H_(s) into the desired digital
transfer function (=)

This approach has been widely used for the
following reasons:

+ 1) Analog approximation techniques are
highly advanced

i 1) They usually yield closed-form
solutions

{31 Extensive tables are available for
analog filter design

() Many applications require digital
simulation of analog systems

15
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An analog transfer function to be denoted as
P, (s)
D (s)

H, (s)=

where the subscript “a” specifically
indicates the analog domain

A digital transfer function derived from H_(s)

shall be denoted as

G(z)=1(2)
(=)

behind the conversion of H,(s)

z) isto apply @

3y $ey thag
Bl OBy 1034

o that essential
properties of the analog frequency response
are preserved

I'hus mapping function should be such that

Imag

wary
mapped onto the

A stable analog transfer function be mapped
into a stable digital gransfer function

Digital Filter Design:
Basic Approaches

* Three commonly used approaches to FIR
filter design -
(1) Windowed Fourier series approach
(2) Frequency sampling approach

(3) Computer-based optimization methods

Chapter 6 Home work:

5, 8, 20, 26, 38, 40 + book examples
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