PAAMPLE 2.3/ Aotal Ssoluton LOmpPpuiation oL an L L o rsiCHL BT LA ialt AR

Let us determine the total sn]utmn for n = 0 of a discrete-time systmﬁ char:alf:l.erized by _l:h-e: f{j‘:lqwing' dj_life_fence
equation: : et LT

Yl + oln — 11— 63ln — 2] = xlnk, | e ),
for a step input x[n] = Su[n] and with initial conditions y[—1] = 1 and y[?—l} = —1. L

We first determine the form of the -:amp_ementary solution. Setting .r[n] e [‘.i and _'.r[n] = ..:'Lﬂ in Eq {llE}S].
W E:'l'l'l‘-{: Aat

il

an—2(32 —]—.L 6)
= A’F—?{A + 3)(.x o 2} = 0,

AR fan—l gan—2

and hence the raots of the characteristic polynomial A a— -6 are ;-.1 # 23, ILg L Ther-::fs::m the complementary
|5-:l-lut.1|:m s of the form - - i :

yelnl = (=3)" Tz L TS T e

For the particular solution, jwe assume

Detii=8.

Substituting the above in Eq. (2.103}, we pget

B+ f — 68 = Bulnl.

which forn = 0 j-“i::lds g = -2
e total solubion 1§ therefore of the form

yinl = ay(=3)" + e2(2)" =2, n > N f_ 2 105)

The Lur‘tﬁtﬂ_ﬂtl‘; ooy and an are chosen to satisfy the specified m.tual cnndlhﬂns J“rnm Ean (2. 1[13) aﬂﬂ Ez 1"]5} W
get e i

yi—2i|= a1 (=32 + :;;-__:{'zrl_ P
y[—1]= ﬁl(_?')_]-—[- ?2":2}*'{.1 — 2 =1

Solving these two equations, we arrive at




EXAMPLE 2.38 Total buluhun (,gmputatmn of an. LTI Sjrstem for an hxpunent:lal Input. .

We determine the mtal mlutmn forn = 0 of the dl“iﬂTEﬂCE'. aquatmn ot Eq {2 }{}3) for an mpilt x[n] == 2“’_u.[n]
with the same initial conditions as in Example - 3’? ol
As indicated in Example 2.37, the t,nmplf.,mentftry solution cmxtama a term a:g{Z)” whmh is of the same ti}rm :
as the specified:input. Hence, we need to select a form for the part;c:uiar solution that is d:ssnnnt and 'E[{]E‘. not
contain any terms qumlar to th(:xE: contamed n tlm., complementary soluuun We, a_sauma ' S

: : ; J"p[-’f] = Bn(2)".
Substituting the above in Eq. (2.103), we get ' i i |
 Bn@)t + B(n — 1}(2}”—* - 68(n — z){?}“ 2-;"— (2}%[;1

For n = 0, we obtain from the ahove:equannﬂ = 0.4)The tnt,al suluuon is now of thr:. fc:rm :

yin] = a1 (- 3)" + o (2" +04n(2:-”"' -.na_ﬂ- s ftzluﬁ;

To determine the values of a) and az, we make use of the bpemﬁed Jmtml -::cmdztmn'a me Eqs {2 103} md
(2.107), we armive at - s ST 3

y[=2) = ay(~ 3)"2 + o222 4 0. 4(——2)@)—2 .
y[—11 = aj(~3)7 '*mz@)”l ;—04&-13{2}—%1

b, @ Thert:fore the total snlumm 15 gwen by

3] = 2. 04{ 3 0.96(2)" +O4n{2}, a0

which when solved yields




279 Zero-Input Response and Zero-State Response

An aliernate approach to determining the total solution yln] of the difference equation of Eq. (2.90) 1
by computing its zero-Tnput response, Jyiln and zero-state response, yys[n]. The component y Jilnlis
obtained by solving Eq. (290) by setting the foput xin x(n] = 0, nd the component y;5[n] 15 obtained by
solving Eq. (2.90) by applying the specified input wit initial conditions Sef 10 Z6r0] The total solution
s then given by yin] + V(.
This approach i illustrated in Example 2.3%

e




and the zemstate mspunse

The zero- 111];!-_1,! response,
the constants ¢ and otz are chosen o satl,sfy the spemﬁed mi

Next, from Eq (2. 104} we ge,t' —
y[0]

The zero-state response s 'déte:nﬁinﬂd'ﬁcifﬁf“ (2105 : -"
fpero initial conditions -me Eq (2 1{}3] wa:-get

Next, from Eq (2 105} and the ah:we set uf equatmnsi- € -armnve
response for n > 0 with mltlal mnc!mf_f_:'ﬂ }’zs‘L 3} ]l’zs [—1] s

ek

which is identical to that derived in Example 2.37, as expected..



Total solution computation from zero input and zero state response

Home work example (from A.A.Beex lecture notes)



Zero input response
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Home work example (from A.A.Beex lecture notes)
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zero state response

ety = (23OR) H(13)E) w22 m2e|
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Home work example (from A.A.Beex lecture notes)



|2.7.3 Impulse Response Calculation

The impulse response A[n] of a causal LTI discrete-time system is the output observed with input x[n] =
5[n]. Thus, it is simply the zero-state response with x[#] = 8[n]. Now for such an input, x[n] = 0 for

Hence, the impulse response can be -

he particular solution is zero, that is, y,[n] = 0
computed from the complementary solution of Eq. (2.101) in the case of simple roots of the characterstic
equation by determining the constants o to satisfy the zero nitial conditions] A Simitar procedure tam

be followed in the case of multiple roots of the characterisfic equation. A system with all zero initial

conditions is often called a relaxed system.

We illustrate the impulse response computation in Examples 2.40 and 241.



iﬂk" 1 <0 o =  Home work-example (from-A.A.Beex lecture notes)




EXAMPLE 2 40

In this example we detenmne the; Hll

Eq. (2.104), we gel

'
. o
Tr—
F

From the above, we arrive at’ |

e

Next, from Eq. (2 Et}Bj ".rérith .r[n]

Thus, lhe 1mpulse rﬁsponS& rs gwen by




2.7.4 Output Computation Using MATLAB

The causal LTI system of the form of Eq. (2.91) can be simulated in MATLAB using the function filter
already made use of in Program 2 4. The function implements Eq. (2.91) in the form of a set of equations

as indicated below:

y[n] = %{[ﬂ] +sy[n -1},

N M
di
yinl==) —yln—k z:f’_’f _
;dﬂy[n ]+k=ﬂ| dﬂx{n k],

PN-1

sn-1[n] =

swin) = Zln] - %y[n],

s1ln] = %x[n] —_ %y[ﬂ] + s2[n — 11,

x[n] — d—?-;;_}-y[n] + sy—2[n — 11,

(2.113)

where s;[n], 1 <i < N,are N internal variables. By back substitution, it can be shown that the_z ab?vc set
of equations indeed reduces to Eq. (2.91). The values of the internal variables s;[n] at the staring instant

are called the initial conditions.
The basic forms of the function £ilter are as follows: '

Yy = filter(p,d,x)
[y, sf] = filter(p,d:X. si]

In the first form, the input data vector x is processed by the system characterized by the coefficient vectors
p and d to generate the output vector y, assuming zero initial conditions. The length of y is the same as the

length of x. The second form permits the inclusion of nonzero initi
s;[n] in the vector si and provides an output that includes the vector

al conditions of the internal variables
S as the final values of s;[n]. Since

the function implements Eq. (2.91), the coefficient dg must be nonzero.

Example 2.43 illustrates the use of the function filter inthe computation of the total solution.




[y1,sf]=filter(1,[1,1,-6],8*ones(1,8),[-7,6]);
stem(yl)

hold on;

n=0:7;

y2=-1.8*(-3).”n+4.8*(2)."n-2;
stem(y2,'r*")
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2.7.5 Impulse and Step Response Computation Using MATLAB

The impulse and step responses of a causal LT1 discrete-time system can be computed using the MATLAB
M-hles impz and stepez, respectively. Each function is available with several options. We illustrate the

use of these two functions in Example 2.44.

EXAMPLE 2.4 Impulae and btep RE'ipﬂﬂbE Cumputanmm Usmg MATLAB

Detennmf: Ihﬁ i}rst 41 qamplcs of the lmpuhf fmd rmponse samples nf tha c,iusai ITI syatem dcﬁncd by

[nl+{}?y[n~l] 045}{?1 21 ﬂﬁy[rz«S]

The :,odc framnents thal L:m e _'

p = 0.8 UQQGBGD[}Z]
f.i:{lﬂ? ~0.45 35]
[h,m] = cimpz(p;d,41);
[s,m]

= stem fn ci ri'{!

The comput od first 41 sampies uf ﬁla 1mpulse and stcp respunse samplas ﬁl‘f: i

respectively.
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2.7.6 Location of Roots of Characteristic Equation for BIBO Stability

It should be noted that the impulse response samples of a stable LTI system decay to zero values as the
time index n becomes very large. Likewise, the step response samples of a stable LTI system approach a
constant value as n becomes very large. From the plots of Figure 2.36(a) and (b), we can conclude that
most likely the LTI system of Eq. (2.114) is BIBO stable. However, it is impossible to check the stability
of a systemn just by examining only a finite segment of its impulse or step response as in these figures.
The BIBO stability of a causal LTI system characterized by a constant coefficient difference equation
of the form of Eq. (2.90) can be inferred from the values of the roots A; of its characteristic polynomial.
To establish the stability conditions, recall that the form of the impulse response is the same as that of the
complementary solution. From Eq. (2.101), assuming all the roots to be distinct, we have

N
h[n] = Za,-;u; wlnl. (2.115)
i=1
The constants &; in the above expression are determined to satisfy zero initial conditions. From Eq. (2.115)
we get
oo oo N N oo
Dolklnl =D |3 e )| = D el D 1Al (2.116)
n=>0 n=01i=1 i=1 n=>0

It follows from the above equation that if jA;| < 1 for all valuesof i, then >_52 |A:|" < 0o, and as aresult,
322 o 1h[n]] < oo; that is, the impulse response is absolutely summable, implying BIBO stability of the
causal LTI discrete-time system. However, the impulse response sequence is not absolutely summable
if one or more oflthe raots A; has a magnitude greater thar or equal to one| It should be noted that the
discrete-time system of Example 2.37 described in Eg. (2.103) is clearly an unstable system as both roots
of the characteristic equation have magnitudes greater than one.

In the case of multiple roots of the characteristic equation, the impulse response will contain terms of
the form n® A7. As a result, the expression for ) ;2 4 |#[7]| will contain the term

o0
> mFoaon,
n=0

which converges if |A;|] < 1 (Problem 2.89), and as a result, here also the impulse response is absolutely
summable.

Summarizing, a causal LTI system characterized by a linear constant coefficient difference equation of
the form of Eq. (2.90) is BIBO stable if the magnitude of each of the roots of its characteristic equation is
less than one. This condition is both necessary and sufficient.




2.8 Classification of LTI Discrete-Time Systems

Linear time-invariant (LTI) discrete-time systems are usually classified either according to the length of
their impulse response sequences or according to the method of calculation employed to determine the

output samples.

2.8.1 Classification Based on Impulse Response Length
If h{n] is of finite length, that is,

h[n]=0 for n < N and n > N> with N; < N, (2.117)

then it is known as a finite impulse response (FIR) discrete-time system, fu.+ which the convolution sum
reduces Lo

Ay
yln] = z hlk)x[n — k]. (2.118)
k=N

Note that the above convolution sum, being a finite sum, can be used to calculate y[n] directly. The
hasic operations involved are simply multiplication and addition. Note that the calculation of the present
value of the output sequence involves the value of the input sample at n = N and N — N previous
values of the input sequence along with the N2 — N + 1 impulse response samples describing the FIR
discrete-time system.

Examples of FIR discrete-time systems are the moving-average system of Eq. (2.61) and the linear
interpolators of Egs. (2.65) and (2.66).

If h[n] is of infinite length, then it is known as a1} infinite impulse response (IIR) discrete-time system.
For a causal IIR discrete-time system with a causal mput x[n], the convolution sum
the form can be expressed im

yInl =) _ x[klh[n — k),
k=0

which can be used to compute the output samples. However, for increasing n, the computational complexity
to compute the output sample increases as the number of products to be summed also increases.
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2.1 Discrete time signal

2.2 Typical sequences and sequence representationy

2.3 The sampling Process

2.4 Discrete Time systemsy

2.5 Time Domain characterization of LTI Discrete-Time systems
2.6 Simple interconnection schemesy

2.7 Finite-Dimensional LTI Discrete time systems
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Home work # (3)

« Reading section correlation of signals:
— Only 2.9.1 and 3, examples 2.46 and 2.47

« Solve proplems of chapter 2 page 107-115:
— #1,5,6, 7(aandc), 8, 17, 25, 38, 50, 64,83,90

* Implement matlab exercise page 115:
— #9

Notes:

— Some final answers will be posted on the course web page
— Submit it as a hardcopy.

— Due dateis 07 Feb ,
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