2.7 Finite-Dimensional LTI Discrete-Time Systems

An important subclass of LTI discrete-time systems is characterized by a linear constant coefficient differ-
ence equation of the form
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where x[n] and y[n] are, respectively, the input and the output of the system, and {d } and { px } are constants.
The order of the discrete-time system is given by max (N, M), which is the order of the difference equation
characterizing the system. It is possible to implement an LTI system characterized by Eq. (2.90) since
the computation here involves two finite sums of products even though such a system, in general, has an
impulse response of infinite length.

The output y[rn] can then be computed recursively from Eq. (2.90). If we assume the system to be
causal, then we can rewrite Eq. (2.90) to express y[n] explicitly as a function of x[n]:
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provided dy # 0. The output y[n] can be computed for all n > n,, knowing x[n] and the initial conditions

J’"[nﬂ' — 1]3 }"[”0 _2}3 -*-ay[nﬂ - N]'
A simple finite-dimensional LTI system is considered in Example 2.36.
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2.7.1 Total Solution Calculation

The procedure for computing the solution of the constant coefficient difference equation of Eq. (2.90) is
very similar to that employed in solving the constant coefficient differential equation in the case of an LTI
continuous-time system. In the case of the discrete-time system of Eq. (2.90), the output response y{n] also
consists of two components that are computed independently and then added to yield the total solution:

ylnl = yelnl + yplnl. (2.97)

[n Eq. 12.97). the component y.[n] is the solution of Eq. (2.90) with the input x[n] = 0; that 1s, it is the
solution of the homogeneous difference equation:

N
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und the component y,[n] is a solution of Eq. (2.90) with x[n] # 0. y.[n] is called the complementary
volution or homogeneous solution, while y,[n] s called the particular solution, resulting from the specified
input x[sn], otten called the forcing function. The sum of the complementary and the particular solutions
as given by Eq. (2.97) is called the roral solution.

We first describe the method of computing the complementary solution y.[n]. To this end, we assume
that it 15 ot the form

yelnl = 2", (2.99)

Substituting the above in Eq. (2.98), we arrive at
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=N (doa" + a2Vt dyad 4 dy) = 0. (2.100)




The polynomial Zfr:ﬂ di . N=* is called the characteristic polynomial of.the discrete-time system of
Eq.i12.90). Let &y, A2, ..., Ay denote its N roots. If these toots are all distinct, then the general form of
the complementary solution is given by

ye[n] = aiA] + aah + - +anhy, (2.101)

where «j, @a. ..., @y are constants determined from the specified initial conditions of the discrete-time
system. The complementary solution takes a different form in the case of multiple roots. For example, if
5.1 i of multiplicity L and the remaining N — L roots, A2, A3, ..., Ay-L, are distinct, then Eq. (2.101)
takes the form

veln] = A" + o + a3n?aT + o+ apnt I oAy o Fanky_ g (2.102)
i l 1 1 2 N-L

Next. we consider the determination of the particular solution y,[n] of the difference equation of
Eq. (2.90). Here the procedure is to assume that the particular solution is also of the same form as the
specified input x(n] if x[n] has the form Ay (ko # A, 1 = 1, 2...., N)foralln. Thus,if x[n]1s a constant,
then v, (1] is also assumed to be constant. Likewise, if x{n] is a sinusoidal sequence, then y,[n] is also
assumed to be a sinusoidal sequence, and 50 on.

We illustrate the determination of the total solution in Example 2.37.



PAAMPLE 2.3/ Aotal Ssoluton LOmpPpuiation oL an L L o rsiCHL BT LA ialt AR

Let us determine the total sn]utmn for n = 0 of a discrete-time systmﬁ char:alf:l.erized by _l:h-e: f{j‘:lqwing' dj_life_fence
equation: : s LT

Vil 4oln— =6yl —2l=xln), | = . 2103

for a step input x[n] = Su[n] and with initial conditions y[—1] = 1 and y[?—z} = —1.

We first determine the form of the -:amp_ementary solution. Setting .r[n] e [‘.i and _'.r[n] = ..:'Lﬂ in Eq {llE}S].
W E:'l'l'l‘-{: Aat
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an—2(32 —]—.L 6)
= A’F—?{A + 3)(.x o 2} = 0,

and hence the raots of the characteristic polynomial A a— -6 are ;-.1 # 23, ILg L Ther-::fs::m the complementary
|5-:l-lut.1|:m s of the form - - i :

yelnl = (=3)" Tz L TS T e

For the particular solution, jwe assume

Detii=8.

Substituting the above in Eq. (2.103}, we pget

B+ f — 68 = Bulnl.

which forn = 0 j-“i::lds g = -2
e total solubion 1§ therefore of the form

yinl = ay(=3)" + e2(2)" =2, n > N f_ 2 105)

The Lur‘tﬁtﬂ_ﬂtl‘; ooy and an are chosen to satisfy the specified m.tual cnndlhﬂns J“rnm Ean (2. 1[13) aﬂﬂ Ez 1"]5} W
get T i

y= 21 = &) {—-3)“2 + mzfzfl_'l R

=11 =a (-3}

Solving these two equations, we arrive at

s mgﬁzr‘i —2 =1




EXAMPLE 2.38 Total buluhun (,gmputatmn of an. LTI Sjrstem for an hxpunent:lal Input. .

We determine the mtal mlutmn forn = 0 of the dl“iﬂTEﬂCE'. aquatmn ot Eq {2 }{}3) for an mpilt x[n] == 2“’_u.[n]
with the same initial conditions as in Example - 3’? ol
As indicated in Example 2.37, the t,nmplf.,mentftry solution cmxtama a term a:g{Z)” whmh is of the same ti}rm :
as the specified:input. Hence, we need to select a form for the part;c:uiar solution that is d:ssnnnt and 'E[{]E‘. not
contain any terms qumlar to th(:xE: contamed n tlm., complementary soluuun We, a_sauma ' S

: : ; J"p[-’f] = Bn(2)".
Substituting the above in Eq. (2.103), we get ' i i |
 Bn@)t + B(n — 1}(2}”—* - 68(n — z){?}“ 2-;"— (2}%[;1

For n = 0, we obtain from the ahove:equannﬂ = 0.4)The tnt,al suluuon is now of thr:. fc:rm :

yin] = a1 (- 3)" + o (2" +04n(2:-”"' -.na_ﬂ- s ftzluﬁ;

To determine the values of a) and az, we make use of the bpemﬁed Jmtml -::cmdztmn'a me Eqs {2 103} md
(2.107), we armive at - s ST 3

y[=2) = ay(~ 3)"2 + o222 4 0. 4(——2)@)—2 .
y[—11 = aj(~3)7 '*mz@)”l ;—04&-13{2}—%1

b, @ Thert:fore the total snlumm 15 gwen by

3] = 2. 04{ 3 0.96(2)" +O4n{2}, a0

which when solved yields




279 Zero-Input Response and Zero-State Response

An aliernate approach to determining the total solution yln] of the difference equation of Eq. (2.90) 1
by computing its zero-Tnput response, Jyiln and zero-state response, yys[n]. The component y Jilnlis
obtained by solving Eq. (290) by setting the foput xin x(n] = 0, nd the component y;5[n] 15 obtained by
solving Eq. (2.90) by applying the specified input wit initial conditions Sef 10 Z6r0] The total solution
s then given by yin] + V(.
This approach i illustrated in Example 2.3%

e




and the zemstate mspunse

The zero- 111];!-_1,! response,
the constants ¢ and otz are chosen o satl,sfy the spemﬁed mi

Next, from Eq (2. 104} we ge,t' —
y[0]

The zero-state response s 'déte:nﬁinﬂd'ﬁcifﬁf“ (2105 : -"
fpero initial conditions -me Eq (2 1{}3] wa:-get

Next, from Eq (2 105} and the ah:we set uf equatmnsi- € -armnve
response for n > 0 with mltlal mnc!mf_f_:'ﬂ }’zs‘L 3} ]l’zs [—1] s

ek

which is identical to that derived in Example 2.37, as expected..



|2.7.3 Impulse Response Calculation

The impulse response A[n] of a causal LTI discrete-time system is the output observed with input x[n] =
5[n]. Thus, it is simply the zero-state response with x[#] = 8[n]. Now for such an input, x[n] = 0 for

Hence, the impulse response can be -

he particular solution is zero, that is, y,[n] = 0
computed from the complementary solution of Eq. (2.101) in the case of simple roots of the characterstic
equation by determining the constants o to satisfy the zero nitial conditions] A Simitar procedure tam

be followed in the case of multiple roots of the characterisfic equation. A system with all zero initial

conditions is often called a relaxed system.

We illustrate the impulse response computation in Examples 2.40 and 241.



Frcrm thﬂ above we armre at e, -'
e h[ﬂ]

Next, from Eq. (2 Et}B] mth ::[n] ﬁ[n]
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Soluion of the above twa sets f eqﬂﬂnﬂﬂﬁ Y‘ﬂdw =0fmin 2060 %%afrf% }**F’?*";;{"“‘”%? |



EXAMPLE 2.41 Impulse Reapﬂnse Cnmputatmn fmm Intal Sniunun

W

A causal LTI discrete-time system WlEh an 1mpu15r:: Te xponsc h{n} Satlsﬁﬂ'i th{—. fnllnmng dlﬂ“erence cquatmn

h[n]—ah[n— i}u.—ﬁ[n] : o : {2 103}

Wwe determine a closed-form EKp[’BbeUB for h{n} and the mputwoutput IEI&IIE}I’I of £he abme system
The total solution of the difference equation of £q. (2: 108} ﬁ gﬁan by o Tl aleie A

W= )+l @09

where he[n} and A p[n] are, respu:tn ely the r:nmplf rﬂentap_,r and the pami:ular ‘;ulutmns To det&rmme 1hc -‘..()m—
plementary solution, we set the r;ght-hand sldc of Eq {2 108) Equal to zero anct set h [n] == JL" rﬁ:sultm:, m

: lnm—aﬁ.- =1 ,_.[}-

The nontrivial solution of the above equan-:m is A =a, and h;,nce k.;»{n] i a_ Por the pamcular snlutmn, wei
assume hpln] = ,8 %ubstitutmg the cxpre&smns for ki [n] am:! hp{n} m Eq (2 109} WE get : :

- 1 h[’} o "n Lﬁ ” :'f N (2113}
From Egs. (2.108) and (2.110), we then have .~ - e ' R T e
implying § = 0. Hence, the total surlutmn, of thc de Eerencc: cquatmn of Eq (2 108} is g‘jv-;,n b}: S

“ an ‘n ::* 0 . Livd ,_-_-: _' L i

i

It should be noted that the above re-su!t could also have baen obtamed by mducuﬂn by eval:uanng Eq (2 1{}8) fcrr

n =10,1,2, ..., and then solving for h[OI R[11. K[2}, and so on, (Pmb":’em 2 44). 1 '
To determme the general input—output relation of the dbmf: di'&CI‘Et&limt s}fstem we convﬂlve both S“ides of

Eq. (2.108) with x[»] and make use of Eq. (2.74) tc amve at i3 ; : Fa s o

{n} = fw[n e I} x£n1 : h s (2112\’ |



[t follows from the form of the complementary solution given by Eq. (2.102) that the impulse response
of 4 finite-dimensional LTI system characterized by a difference equation of the form of Eq. (2.90) 1s of

infinite length. However, as illustrated in Example 2.42, there exist LIT discrete-nme systems WILh afl
infinite impulse response that cannot be characterized by the difference equation form of Eq. (2.90).

EXAMPLE 242 A Causal StahleLTI__Dis::retié-Tfir'ne System Wlﬂ’l \iu Diffe_x_-e_m;e Equaﬁﬂ.n: BePrﬁsentaﬁ‘.’_“

Th{: 5}.51{:1.“ d{:ﬁﬂﬂd by the impulse respnnﬂe . b R U R e R A i -. Gt gt I
ki) sl S e s R

does not have a representation in the form of a linear constant ;qéfﬁii_iéilt:ﬂiffﬁfﬁ_ﬁﬁi'éﬁﬁ#ﬁﬂﬁ.; 1t should be noted

that the above system is causal and EI?E}BIBO SE...E-.['J!E. :

Since the impulse response ii[n] of a causal discrete-time system is a causal sequence, Eq. (2.91) can
10 be used to calculate recursively the impulse response for n > 0 by setting initial conditions to zero
values. that is, by setting y[=1] = y[-2] = -+ = y[~N] = 0, and using a unit sample sequence &[n] as

the input x[r]. The step response of a causal LTI system can similarly be computed recursively by seting
sero initial conditions and applying a unit step sequence as the input. It should be noted that the causal
discrete-time system of Eq. (2.91) is linear only for zero ipitial conditions (Problem 2.67).



2.7.4 Output Computation Using MATLAB

The causal LTI system of the form of Eq. (2.91) can be simulated in MATLAB using the function filter
already made use of in Program 2 4. The function implements Eq. (2.91) in the form of a set of equations

as indicated below:

y[n] = %{[ﬂ] +sy[n -1},

N M
di
yinl==) —yln—k z:f’_’f _
;dﬂy[n ]+k=ﬂ| dﬂx{n k],

PN-1

sn-1[n] =

swin) = Zln] - %y[n],

s1ln] = %x[n] —_ %y[ﬂ] + s2[n — 11,

x[n] — d—?-;;_}-y[n] + sy—2[n — 11,

(2.113)

where s;[n], 1 <i < N,are N internal variables. By back substitution, it can be shown that the_z ab?vc set
of equations indeed reduces to Eq. (2.91). The values of the internal variables s;[n] at the staring instant

are called the initial conditions.
The basic forms of the function £ilter are as follows: '

Yy = filter(p,d,x)
[y, sf] = filter(p,d:X. si]

In the first form, the input data vector x is processed by the system characterized by the coefficient vectors
p and d to generate the output vector y, assuming zero initial conditions. The length of y is the same as the

length of x. The second form permits the inclusion of nonzero initi
s;[n] in the vector si and provides an output that includes the vector

al conditions of the internal variables
S as the final values of s;[n]. Since

the function implements Eq. (2.91), the coefficient dg must be nonzero.

Example 2.43 illustrates the use of the function filter inthe computation of the total solution.
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Figure 2.36: (a) Impulse response and (b) step response of the system of Eq. (2.114).



2.7.5 Impulse and Step Response Computation Using MATLAB

The impulse and step responses of a causal LT discrete-time system can be computed using the MATLAB

M-files impz and stepz, respectively. Each function is available with several options. We illustrate the
use of these two functions in Example 2.44.

EXAMPLE 2.44 Impulae and btep Reqpnnae Cﬂmputatmns Usmg MATLAB

Dr:terrnme the ilrst. 41 qamplcs of the unpuhf anci rf:&ponse samp[es nf the. CdUSEﬂ ITI syatem dcﬁnc:d by
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The code fra gments that f;:m be uaed iﬂ cﬂmputc thc meulse; am:l suep msponsc s-amples m: hs fnl!an -_"-' i -’- s

.'.p =
q =
|
[s

[ 44 e 36 0. uz1 .
{ 7 ~0.45 -0.6]%
m] =
m]

1mpz(p d, 41}, ~_
-, stepz (p d 41},

The comput ed first 41 samp}e'; c—f the; lmpﬂlﬂﬂ and stcp respunse samples &Iﬂ mdmated it F:gures 2 36(3} and ( } -
respectively, o AR Ca . .



HW#2

due date next lecture, submitted as a hard copy
Q1. Determine the total solution for a discrete time system
characterized by the following LCCDE:
y[n]=5/6 y[n-1]-1/6 y[n-2] +x[n] + V2 x[n-1]

For a step input x[n]=2"n, n=20
initial conditions x[-1]=1, y[-1]=6 and y[-2]=6

Q2. verify and plot the results of the code of examples 2.43 and 2.44
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