
Chapter 7

Tracking of Spread
Spectrum Signals

7.1 Introduction

As discussed in the last chapter, there are two parts to the synchronization
process. The first stage is often termed acquisition and typically obtains initial,
coarse timing synchronization. The second is termed tracking and involves fine
tuning the delay estimate. Tracking occurs throughout the duration of the
communication. This procedure is presented in Figure 7.1.

In this chapter we will investigate code tracking. Code tracking is analo-
gous to phase tracking in conventional digital communication systems. Much
of the analysis can be directly borrowed from phase tracking analysis. There
are several well-known techniques for performing tracking including the Delay
Lock Loop (DLL), the Tau-Dither Loop, and the Double-Dither Loop. In this
chapter we will focus on the Delay Lock Loop.

7.2 The Delay Lock Loop

Perhaps the most common form of tracking is the delay lock loop or what is often
termed the Early-Late Gate. The coherent Early-Late Gate is plotted in Figure
7.2. The basic idea behind the circuit is that if we attempt to despread the
signal with a version of the spreading code that is either early or late, we obtain
less then full energy. The difference between these two despreader outputs (on
average) tells us whether the current timing is ahead or behind the true delay.
To understand this consider Figure 7.2.
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As can be seen from the figure, the output of the early branch is
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while the output from the late branch is
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Thus, the input to the loop filter is
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This is plotted in Figure 7.4 for an arbitrary value of ∆. Note that while the
discriminator characteristic is non-linear in general, it is linear in the region
near δ = 0. Thus, provided that the difference between the estimated delay
and the true delay is no more than a fraction of a chip, the discriminator will
operate in its linear range. The size of the linear range, as well as the slope
depends on the value of ∆. This can be seen in Figure 7.5 where the S-curve
is plotted for ∆ = 1

2 , ∆ = 1, ∆ = 3
2 , and ∆ = 2. When ∆ = 1

2 , the linear
range is −0.25Tc ≤ t ≤ 0.25Tc. Further, the slope is 2

¡
1 + 1

N

¢
. By increasing

∆ to a full chip, the slope remains unchanged, but the linear region is increased
to −0.5Tc ≤ t ≤ 0.5Tc. However, increasing ∆ further reduces the linear range
back to −0.25Tc ≤ t ≤ 0.25Tc again. However, notice that the characteristic is
also linear for −0.75Tc ≤ t ≤ −0.25Tc and 0.25Tc ≤ t ≤ 0.75Tc although with a
lower slope of

¡
1 + 1

N

¢
. By increasing ∆ to 2, the first linear region is reduced

to zero, while the second linear region is increased to −Tc ≤ t ≤ Tc

7.2.1 Impact of Pulse Shape

In the previous section we analyzed the tracking discriminator characteristic
assuming a square pulse shape. However, due to the large bandwidth require-
ments of square pulses they are rarely used in wireless applications. Thus, we
need to evaluate the impact of other pulse shapes. As as an example consider
the optimal pulse shape in terms of bandwidth, the sinc pulse. The sinc pulse
can be written as

p (t) = Tc sin c

µ
t

Tc

¶
(7.4)



4 CHAPTER 7. TRACKING OF SPREAD SPECTRUM SIGNALS

Spreading
Code

Generator

LPF

LPF 21
2

21
2

Σ

-

+

Loop
Filter

Voltage
Control
Clock

r(t)

ε(t)Late Branch

Early Branch

2 ca t Tτ ∆⎛ ⎞− −⎜ ⎟
⎝ ⎠

2 ca t Tτ ∆⎛ ⎞− +⎜ ⎟
⎝ ⎠

( )D δ∆

Figure 7.3: Block Diagram of the Early-Late Gate Tracking Loop

( )
2 2a c a cD R T R Tδ δ δ∆

⎡ ∆ ⎤ ⎡ ∆ ⎤⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

2a cR Tδ⎡ ∆ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2a cR Tδ⎡ ∆ ⎤⎛ ⎞− +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

( )D δ∆

S-curve

δ

δ = difference 
between the 
actual delay and 
the estimated 
delay

Figure 7.4: Coherent DLL S -Curve



7.2. THE DELAY LOCK LOOP 5

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

Delay (chips)
-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

Delay (chips)

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

Delay (chips)
-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

Delay (chips)

∆ = 1/2 ∆ = 1 

∆ = 1.5 ∆ = 2

Figure 7.5: Coherent DLL Discriminator S -curve Characteristic for ∆ =
1/2, 1, 1.5, 2



6 CHAPTER 7. TRACKING OF SPREAD SPECTRUM SIGNALS

As discussed in Chapter 5, the autocorrelation of the spreading waveform is
dominated by the pulse autocorrelation function. We can find the autocorrela-
tion function of the sinc pulse as

Rp (τ) = p (t) ∗ p (−t) (7.5)

= p (t) ∗ p (t) (7.6)

where the second line results from the fact that the sinc pulse is symmetric.
Using the Fourier Transform, we can write

Rp (τ) = F−1 {P (f)P (f)} (7.7)

where P (f) is the Fourier Transform of the pulse shape. Thus, we can write

Rp (τ) = F−1 {rec (fTc) rec (fTc)} (7.8)

= F−1 {rec (fTc)} (7.9)

= Tc sin c

µ
t

Tc

¶
(7.10)

Thus, the autocorrelation function is the same as the pulse shape. Assuming

the ideal sequence autocorrelation Caa(n) =

½
1 n = 0
0 n 6= 0 , the discriminator

characteristic can be written as

D∆(δ) = Rp
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(7.11)
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The resulting characteristic is plotted in Figure 7.6. We can see that like the
square pulse, there exists a nearly linear region with a slope of approximately
2 over the range

¡
−12 ,

1
2

¢
. Like in the case of a square pulse, the discriminator

will work properly provided that the error stays within this linear region.
Further, consider two additional pulses that are commonly used the raised

cosine pulse (roll-off factor of 0.25) and the pulse used in the IS-95 standard
[1]. The pulses are plotted along with a square pulse in Figure 7.7. Using
the same development as shown above for the sinc pulse, we can derive the
autocorrelation fuction and the resulting discriminator characteristic for each
of the pulse shapes. The discriminator characteristic for each pulse is given in
Figure 7.8 for ∆ = 1, ∆ = 1/2, and ∆ = 3/2 respectively. We can see that the
other pulse shapes provide similar trends as the square pulse. Setting ∆ = 1
provides the best characteristic as ∆ = 1/2 impacts the size and slope of the
linear region while ∆ = 1.5 slightly distorts the linear region.
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7.3 The Non-coherent Delay Lock Loop
A main limitation of the coherent delay lock loop is that it cannot tolerate data
modulation. Thus, it requires a pilot signal for proper operation. In many cases
pilot signals cannot be afforded since they result in wasted power. A solution
to this problem is the non-coherent delay lock loop shown in Figure ??. In this
loop, the output of the despreading operation on both the early and the late
branch are squared prior to subtracting the early result from the late result.
While this changes the discriminator characteristic, it still results in a linear
region around δ = 0 and thus allows for proper operation. Specifically the
discriminator characteristic is [2]

D∆(δ) = R2a

µ∙
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2

¸
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¶
(7.13)

For ∆ ≥ 1, this results in
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For ∆ ≤ 1 the discriminator characteristic is

∆a(δ) =
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As can be seen, the region around δ = 0 is linear. The size of the linear region
depends on the value of ∆. For ∆ > 1, the linear region is −

¡
1− ∆2

¢
< δ ≤¡

1− ∆2
¢
whereas when ∆ ≤ 1, the region is −∆2 < δ ≤ ∆

2 . In either case, we see
that the linear region is maximized when ∆ = 1. Examples of the Non-coherent
DLL discriminator characteristic are plotted in Figure 7.9

7.4 Loop Analysis
In order to analyze the performance of the delay lock loop we must create a
model for the delay and the resulting tracking error. A straightforward non-
linear model of the loop is presented in Figure 7.10. The time varying delay of
the signal normalized by the chip period comes into the loop and is the compared
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to the current delay estimate. The difference is input into the discriminator.
The output of the discriminator is determined by the non-linear discriminator
characteristic. The signal-to-noise ratio of the input signal is captured by a
gain

√
P multiplying the discriminator output before tracking noise is added.

The noisy signal is filtered before driving a voltage controlled clock which can
be represented by a simple integrator. The output of the integrator is delay
estimate which is compared to the input delay.

The non-linear model of the loop is not particularly convenient to analyze.
If the delay estimate is within a fraction of a chip of the true estimate (this
will depend on the accuracy of the acquisition circuitry and the tracking loop
performance), the discriminator will operate within its linear range. Provided
that this is the case, the loop can be modeled using a linear version of the loop.
This is given in Figure 7.11. The discriminator is replaced by a linear gain
term Kd = P

h
dD(δ)
dδ

i
δ=0
. Since the model is linear, the noise can be moved to

the input of the loop, after scaling by the discriminator gain. Evaluating the
discriminator gain:

Kd = 4P

µ
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1

N

¶ ∙
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µ
1 +

1

N

¶
∆

2

¸
(7.16)



12 CHAPTER 7. TRACKING OF SPREAD SPECTRUM SIGNALS

Loop
FilterΣ

VCC

0

( )
t

cg v dλ λ∫

dK+
-

( )( ) e

c d

n tt
T K
τ

+

( )

c

t
T
τ

Figure 7.11: Linear Model of the Delay Lock Loop

7.4.1 Discrete Analysis

The loop can be analyzed using standard discrete time analysis (i.e., z-transform)
techniques. Let us define the loop filter as αF (z) and the model the integra-
tor (accumulator) as z−1

1−z−1 where z−1 is the standard delay operator in the
z-transform domain. The output of the accumulator can then be found as

τ̂(z)

Tc
=

µ
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Tc
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Tc

¶
αKdF (z)z
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=
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−1

1−z−1
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Tc

H(z)

1 +H(z)
(7.17)

Now, letting F (z) = 1,

τ̂(z)

Tc
=

τ(z)

Tc

αKdz
−1

1−z−1

1 + αF (z)z−1

1−z−1

=
τ(z)

Tc

αKdz
−1

1− z−1 (1− αKd)
(7.18)

Now, for ∆ = Tc, Kd ≈ 2P . Thus,

τ̂(z)

Tc
=

τ(z)

Tc

2αPz−1

1− z−1 (1− 2αP ) (7.19)
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Thus, for an arbitrary input τ(z) we can determine a loop response τ̂(z). Ad-
ditionally, we can compute the loop error response as

τe(z) =

µ
τ(z)

Tc
− τ̂(z)

Tc

¶
=

τ(z)

Tc

1− z−1

1− z−1 (1− 2αP ) (7.20)

The main control parameter in this case is the filter gain α. We can decrease
the loop response to noise by decreasing α. However, this also has the effect of
increasing the loop response time. As an example, consider a step input ∆τTc

τe(z) =
∆τ

Tc

1

1− z−1
1− z−1

1− z−1 (1− 2αP )

=
∆τ

Tc

1

1− z−1 (1− 2αP ) (7.21)

As an example consider a step input change of 0.25Tc. Figure ?? plots a sample
loop response for an input SNR of 10dB, F (z) = 1 and α = 0.01. It can be
seen that the loop responds very quickly, converging in a few hundred samples.
However, there is significant jitter in the response as the delay estimate varies
between 0.2Tc and 0.3Tc. If we decrease α by a factor of 10, the loop responds
much more slowly, but the jitter is reduced considerably as shown in Figure ??.
Finally, consider a constantly changing input delay. Specifically in Figure

7.12 the response of the loop to an input with a slew rate of 0.0001Tc per sample
is plotted. The initial delay value is 0.25Tc and α = 0.01. The loop is able to
track the change, although the estimate is somewhat noisy.
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7.4.2 Non-coherent DLL Performance

The non-coherent DLL can be analyzed using a linear loop model in the same
manner as the coherent loop. The only adjustment that must be made is the
discriminator gain which is slightly different for the non-coherent loop. We
would like to analyze the loop jitter, that is the variance in the delay estimate.
This can be found as

σ2δ =

Z ∞
−∞

Sn(f) |H(f)|2 df (7.22)

where Sn(f) is the input noise power spectral density andH(f) is the loop trans-
fer function. It can be shown that the noise at the output of the discriminator
is white with two-sided density
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¸¾
(7.23)
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Now the jitter is then σ2δ =
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Returning to the equation for loop jitter
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The gain of the discriminator characteristic can be found to be
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(7.27)

where ρL is the loop SNR and ρIF is the SNR at the IF bandpass filter. In
general (any value of ∆) the jitter is

σ2δ =

Ã
1

ρIF
¡
1− ∆2

¢2 + 1
!
1

ρL
(7.28)

As an example, consider the plots of jitter versus loop SNR (ρL) in Figure 7.13.
The bandwidth at IF is 100 times the loop bandwidth. We can see that ∆
makes little difference. However, recall that ∆ can have a large impact on the
linear range of discriminator. Figure 7.14 plots jitter versus loop SNR for the
case where the IF bandwidth is 1000 times the loop bandwidth. For the larger
IF bandwidth, there is more noise at the input which increases tracking jitter
for a constant loop SNR. Again, we see that ∆ has little impact.
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Figure 7.13: Example of Timing Jitter (BIF = 100BL, SNR = 10dB, α = 0.01)
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7.5 Laplace Analysis
Another technique for investigating the performance of a tracking loop is to
investigate it in the analog domain via the Laplace transform. The linear model
for the delay lock loop in the Laplace domain is presented in Figure 7.15. The
model is similar to the discrete domain version with the exception that the
integrator is now represented by 1

s and all transforms are in the Laplace domain.
The transfer function of the loop H(s) = fracτ̂(s)τ(s) can be found from

the linear model. Specifically,

τ̂(s)

Tc
= KdF (s)

gc
s

½
τ(s)

Tc
− τ̂

(
s)Tc

¾
τ̂(s)

Tc
=

½
1 +KdF (s)

gc
s

τ(s)

Tc

¾
(7.29)

Solving for H(s) results in

H(s) =
KdF (s)gc

1 +KdF (s)gc
(7.30)

We can also easily find the tracking error with respect to the input signal as

E(s) =
τ(s)

Tc
− τ̂(s)

Tc

=
τ(s)

Tc
[1−H(s)]

=
τ(s)

Tc

s

s+KdgcF (s)
(7.31)

We are interested in two aspects of the error signal: the steady state error
and the response time. We would like to examine the impact that F (s) has on
these two items. We shall first examine the steady state error. The steady state
error can be found as lims←0 sE(s). Let us first consider a step change to the
delay: τ(t) = Au(t). The steady state error e can be found as

e = lim
s←0

sE(s)

= lim
s←0

s
τ(s)

Tc

s

s+KdgcF (s)

= lim
s←0

s
A

s

s

s+KdgcF (s)

= lim
s←0

As

s+KdgcF (s)

= 0 (7.32)

Thus, for a step input the loop will eventually track the change regardless of
the loop filter forcing the steady state error to zero.
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Figure 7.15: A Linear Model of the Coherent Delay Lock Loop in the Laplace
Transform Domain

To find the error response, let us first examine the all pass filter F (s) = 1.
The error is then

E(s) =
τ(s)

Tc

s

s+KdgcF (s)

=
A

s

s

s+KdgcF (s)

=
A

s+KdgcF (s)
(7.33)

Taking the inverse Laplace transform

e(t) = Ae−Kdgct (7.34)

Thus, we can see again that the error will eventually decay to zero. The rate
of decay depends on the discriminator gain and the integrator constant. An
example is plotted in Figure 7.16 for an all pass filter and a step input of 0.25Tc.
In the example, ∆ = 1 and SNR = 10.

As a second case let us examine a low pass filter as the loop filter. That is

F (s) =
α

s+ α
(7.35)



7.5. LAPLACE ANALYSIS 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Time (sec)

E
rro

r (
ch

ip
s)

Figure 7.16: Example Error Signal 0.25Tc Step Input

The error signal is then found in the Laplace domain as

E(s) =
τ(s)

Tc

s

s+KdgcF (s)

=
A

s

s

s+Kdgc
α

s+α

=
A(s+ α)

s2 + αs+ αKdgc

=
A(s+ α)

(s+ a)2 + ω2n
(7.36)

where we have substituted a = α
2 and ωn =

p
aKdgc − a2. Taking the inverse

Laplace transform

e(t) = Ae−at
∙
cosωnt+

a

ωn
sinωnt

¸
(7.37)

Thus, larger values of α result in faster response times. Recalling the loop filter
given above:

|(ω)| = 1q
1 + ω2

α2

(7.38)

we can see that increasing α will improve the response time but ill correspond
to a larger loop filter bandwidth which will degrade the noise performance.
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Figure 7.17: Example Error Signal with Reduced Bandwidth Filter
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Figure 7.19: Comparison of Filter Magnitude Responses for Example

As an example, consider a low pass loop filter with a bandwidth of 1kHz.
Again assume that the input is a step change of 0.25 Tc. The tracking error is
plotted in Figure 7.17. We can see that the loop tracks very quickly. If the loop
filter bandwidth is reduced to 100Hz, the loop will track more slowly as seen in
Figure ??. A comparison of the magnitude response of the two filters is given
in Figure 7.19.
Finally, let us consider a design problem. Let us assume that we have a

non-coherent DLL with a first order low pass loop filter. Let us set ∆ = 1 and
assume that the IF bandwidth is 1MHz. If the system requires a delay estimate
to be within 1/16 of a chip in 1ms, what choice of α will minimize the tracking
jitter?
To solve this, we first recall that the tracking jitter is related to the loop and

IF SNR’s by

σ2n =

µ
4

ρIF
+ 1

¶
WL

2ρLBn

Thus, we want to minimize the loop bandwidth to minimize the jitter. However,
the error signal is

e(t) = Ae−at
∙
cosωnt+

a

ωn
sinωnt

¸
(7.39)

Examining the envelope, we want

Ae−a∗(0.001) ≤ 1

16
(7.40)
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Figure 7.20: Example Error Response

Solving for α we find that we need α ≥ 2750. Thus, the smallest value of α that
satisfies our requirement is 2750. Choosing α = 2800 results in the response
plotted in Figure 7.20. We can see that the error is less than 1/16 th of a chip
by 1ms. The loop filter is plotted in Figure ??. The Loop bandwidth is approx-
imately 2800Hz. Thus, the tracking jitter can be found as

³
4

ρIF
+ 1
´
2800
2ρIF

. The

resulting plot of tracking jitter is plotted in Figure 7.22.

7.6 Tracking with Frequency Hopping

Tracking in frequency hopped systems is very much like direct sequence systems.
A delay lock loop for frequency hopped systems is plotted in Figure 7.23. The
loop removes the frequency hopping using delayed and advanced versions of the
frequency hopping signal. The resulting energy of the two branches is filtered
and a difference signal is formed which controls the timing of the hopping signal.
To illustrate how the loop functions consider a frequency hopped signal with
arbitrary modulation given in Figure ??.
When the timing of the despreading signal is properly aligned, the resulting

signal is dehopped into the original frequency band. A despread signal with
improper timing will result in some of the signal energy outside of the original
frequency band as shown in Figure 7.25 since the frequency of the dehopping
signal will not coincide with the incoming signal for the entire chip time. In this
example the estimated delay is smaller than the true delay. The early branch has
a delay which is lower by some amount than the on time despreading branch.
This results in even less energy as shown in Figure 7.26. However, the late
branch will result in more despread energy since it is closer to the true delay
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Figure 7.23: Delay Lock Loop for Frequency Hopped Systems
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Figure 7.24: Example of the Received Signal Spectrum Occupancy for Frequency
Hopped System
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Figure 7.25: Example of the Received Signal Spectrum Occupancy for Frequency
Hopped System with Improper Synchronization

as shown in Figure 7.27. By taking the difference between late branch and the
early branch, the result is a positive number since the late energy is greater
than the early energy. The delay estimate is thus increased, which is the proper
change.
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Figure 7.26: Example of the Received Signal Spectrum Occupancy for Early
Branch of Frequency Hopped Tracking Loop
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Figure 7.27: Example of the Received Signal Spectrum Occupancy for Early
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