
Chapter 4

Frequency Hopped Spread
Spectrum

In the previous chapter we introduced the concept of direct sequence spread
spectrum. While this is the most common form of spread spectrum, it is by
no means the only important technique. In this chapter we describe a second
common form, namely frequency hopped spread spectrum. Additionally, we
will also briefly describe other techniques including chirp modulation and time-
hopping.

4.1 Definition/Description

The goal of spread spectrum systems is to increase the dimensionality of the
signal. By increasing the dimensionality, we make eavesdropping and/or jam-
ming more difficult since there are more dimensions of the signal to consider.
In commercial applications, this means that the increased dimensionality pro-
vides robustness in the presence of other systems and less interference caused to
those same systems. The main method of increasing the dimensionality of the
signal is to increase the signal’s spectral occupancy. Last chapter we discussed
in detail one method of accomplishing this, direct sequence spread spectrum.
In DS/SS the bandwidth is increased by directly multiplying the data signal
by a high rate pseudo-random spreading sequence. A second method of accom-
plishing this bandwidth expansion is through frequency hopping. In frequency
hopped spread spectrum (FH/SS) the carrier frequency of the data modulated
sinusoidal carrier is periodically changed over some predetermined bandwidth.
By "hopping" the center frequency to one of N contiguous but non-overlapping
frequency bands, the overall spectrum occupancy is increased by the factor N .
This hopping is typically done in a pseudo-random manner. In military ap-
plications this makes interception and jamming more difficult. In commercial
applications, it reduces the impact of a particular co-channel interferer as well
as the impact to another system since it will only be present in a particular
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Figure 4.1: Illustration of Spectrum Spreading through Frequency Hopping

band on average 1/N of the time.
The hopping signal can be represented as

h(t) =
∞X

i=−∞
p(t− iTc) cos (2πfit+ φi) (4.1)

where p(t) is the pulse shape used for the hopping waveform (typically as-
sumed to be a square pulse), fi ∈ {f1, f2, . . . fN} are the N hop frequencies,
Tc is the hop period also called the chip period, and φi are the phases of each
oscillator. The resulting frequency hopped transmit signal is then

s(t) = [sd(t)h(t)]BPF

=

"
sd(t)

∞X
i=−∞

p(t− nTc) cos 2πfit+ φi

#
BPF

(4.2)

where sd(t) is the bandpass data signal which depends on the modulation scheme
employed and the bandpass filter (applied to the quantity within [·]BPF ) is de-
signed to transmit the sum frequencies only. The concept of frequency hopping
is illustrated in Figure 4.1. As time advances the signal occupies a separate
frequency band as determined by the hopping sequence. On average the power
spectral density is spread over the entire band as shown. Provided that each
frequency band is used 1

N of the time, the spectrum will be similar to that seen
in DS/SS systems when averaged over a sufficiently long time period.
The transmitter and receiver for a typical implementation are shown in Fig-

ures 4.2 and 4.3 respectively. As shown in the figures, any modulation scheme
(with either coherent or non-coherent demodulation) can theoretically be used.
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Figure 4.2: Typical Frequency-Hopping Transmitter Architecture
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Figure 4.3: Typical Frequency Hopping Receiver Architecture

As in DS/SS the frequency hopping is ideally transparent to the data demodula-
tor. The data modulated carrier is hopped to one of N carrier frequencies every
"chip" period Tc which may be greater than the data symbol period Ts. At the
receiver the same hopping pattern is generated such that the received signal is
ideally mixed back down to the original carrier frequency. Data demodulation is
then accomplished as in standard digital communications. Note that the band-
width expansion factor is equal to N the number of hop frequencies. Unlike in
DS/SS, the bandwidth expansion is not dependent on the chip period Tc. In
fact, as mentioned, the chip period can be greater than the symbol period. In
other words, the hopping may be slower than the symbol rate. We will discuss
the consequences of this relationship later.
Although, any modulation format can be used with FH/SS, coherent de-

modulation techniques require that the frequency hopping maintain frequency
coherence each hop. This can be difficult to maintain and thus non-coherent
demodulation techniques are more commonly used with FH/SS. Specifically,
M -FSK is commonly used in conjunction with FH/SS.
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Figure 4.4: Example of a Time-Frequency Plot for Slow Hopping (Tc=Hop
period, Ts = symbol period, Tb = bit period, Wh = spread bandwidth, Wd =
symbol bandwidth)

4.1.1 Slow versus Fast Hopping

As mentioned earlier, the hop period (also called the chip period Tc) may be
greater or less than the symbol duration. The bandwidth expansion factor is
related only to the number of hop frequencies N , not the hop period. Thus, we
are free to choose the hop period based on other considerations. Specifically,
the hop frequency should be chosen based on implementation and performance
considerations. First let us consider the case where Tc > Ts, or slow hopping.
Additionally, let us assume that FSK modulation is used. Figure 4.4 plots the
frequency occupancy versus time considering both the data modulation and
frequency hopping. In this example Tc = 4Ts, or the frequency is hopped every
four symbols, N = 6 and M = 4 (Tb = Ts/2). Further, in the figure we
have defined Wd as the bandwidth of the MFSK signal and Wh as the spread
bandwidth. As can be seen, every Ts seconds, the frequency is changed to one
of 4 symbols based on the data. Additionally, every Tc seconds, the center
frequency of these symbols is changed based on the frequency hopping pattern.
At the receiver the pseudo-random hopping is removed, leaving only the data
modulation as shown in Figure 4.5.
In contrast to slow hopping, with fast frequency hopping Tc < Ts. That

is, frequency hopping occurs faster than the modulation. This is depicted in
Figure 4.6 where Tc = Ts

2 , N=6, and M=4. In this case coherent modulation
is extremely difficult since it would require extremely fast carrier synchroniza-
tion. Thus, non-coherent FSK is almost universally used with fast hopping.
The despread or de-hopped signal is plotted in Figure 4.5 which shows that the
despread data is the same as in slow hopping. Fast hopping, although more diffi-
cult to implement, offers some advantages over slow hopping. First, unlike slow
hopping, fast hopping provides frequency diversity at the symbol level which
provides substantial benefit in fading channels or versus narrowband jamming.
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Figure 4.5: Example of Time-Frequency Plot after Despreading
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Figure 4.6: Example of Time-Frequency Plot for Fast Hopping (Tc=Hop period,
Ts = symbol period, Tb = bit period, Wh = spread bandwidth, Wd = symbol
bandwidth)

Slow hopping can obtain these same benefits through error correction coding as
we will see later, but fast hopping offers this benefit before coding, which can
provide better performance, especially when punctured codes are used.
The reception of FH/SS is accomplished as shown in Figure 4.3. The de-

spread signal y(t) is obtained by multiplying the incoming signal by the hopping
signal and filtering out the images:

y(t) = [r(t)h(t)]BPF

=

"
(s(t) + n(t))

∞X
i=−∞

p(t− nTc) cos 2πfit+ φi

#
BPF

= sd (t) + n0 (t) (4.3)

where n0 (t) is the noise process after despreading and filtering.
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4.2 Complex Baseband Representation

As with DS/SS, the complex envelope representation can be convenient for
analysis and simulation. Thus, we would like to introduce the complex baseband
for FH/SS systems. Specifcally, the hopping waveform can be represented in
complex baseband as

h̃(t) =
∞X

i=−∞
p(t− iTc)e

j(2πfit+φi) (4.4)

where fi, φi and p(t) were defined earlier. ForM -FSK modulation, the complex
baseband version of the data signal is

d̃(t)
∞X

i=−∞
p(t− iTs)e

j(2πfit+φi) (4.5)

where fi ∈ {f1, f2, . . . fM} are the M symbol frequencies. The transmit signal
is then

s̃(t) = d̃(t)h̃(t) (4.6)

and dehopping (depsreading) is accomplished by ỹ(t) = s̃(t)h̃∗(t) = h̃(t)d̃(t)h̃∗(t) =

d̃(t) since
¯̄̄eh (t)¯̄̄2 = 1 assuming square pulses.

4.3 Power Spectral Density of FH/SS

The power spectral density of FH/SS can be found as

S(f) = Sd(f) ∗H(f) (4.7)

where Sd(f) is the power spectral density of the data modulated carrier before
hopping and H(f) is the power spectral density of the hopping waveform. If we
define N as the number of hop frequencies it can be shown that the PSD of the
hopping waveform is [Peterson et al., 1995]

H(f) =
1

T 2c

∞X
i=−∞

¯̄̄̄
¯
NX
k=1

pkGk

µ
i

Tc

¶¯̄̄̄
¯
2

δ

µ
f − i

Tc

¶
+
1

Tc

NX
k=1

pk(1− pk) |Gk(f)|2

− 1
Tc

NX
k=1

NX
m = 1
m 6= k
m > k

pkpm<{Gk(f)G
∗
m(f)} (4.8)

whereGm(f) is the Fourier Transform of the pulsed carrier p(t) cos (2πfmt+ φm)
defined over 0 ≤ t ≤ Tc and pm is the probability of using the mth carrier. We
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can find Gm(f) as (assuming p (t) is a square pulse)

Gm(f) = F {gm(t)}
= F {p(t) cos (2πfmt+ φm)}
= Tce

−j[π(f−fm)Tc−φm]sinc ((f − fm)Tc)

+Tce
−j[π(f+fm)Tc+φm]sinc ((f + fm)Tc) (4.9)

Now, if the carrier spacing is such that the spectra of of Gm(f) and Gk(f) do
not overlap for m 6= k (i.e., if the hop rate 1

Tc
is slow compared to the minimum

carrier spacing), and we assume that all hop frequencies are equally likely we
obtain

H(f) ≈ 1

T 2cN
2

∞X
i=−∞

NX
k=1

¯̄̄̄
Gk

µ
i

Tc

¶¯̄̄̄2
δ

µ
f − i

Tc

¶

+
1

Tc

1

N

µ
1− 1

N

¶ NX
k=1

|Gk(f)|2 (4.10)

Inserting for equation (4.9) for Gm(f) into (4.10), the resulting PSD is

H(f) ≈ 1

N2

∞X
i=−∞

NX
k=1

¡
sinc2 (i− fkTc) + sinc

2 (i+ fmTc)
¢
δ

µ
f − i

Tc

¶

+
Tc
N

µ
1− 1

N

¶ NX
k=1

£
sinc2 ((f − fk)Tc) + sinc

2 ((f + fk)Tc)
¤
(4.11)

Now, if we choose the frequency spacing to be an integer multiple of the hop
rate for illustration purposes, we sample the sinc function at integer values
eliminating all terms except the first:

H(f) ≈ 1

N2

NX
k=1

[δ (f − fk) + δ (f + fk)]

+
Tc
N

µ
1− 1

M

¶ NX
k=1

£
sinc2 ((f − fk)Tc) + sinc

2 ((f + fk)Tc)
¤
(4.12)

As an example, let us consider the power spectral density when BPSK with
coherent frequency hopping is used. Now, from previous developments we know
that the PSD of BPSK is

Sd(f) =
A2Tb
4

£
sinc2 ((f − fc)Tb) + sinc

2 ((f + fc)Tb)
¤

(4.13)

In order to find the PSD of transmit signal S(f), we must convolve H(f) with
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Figure 4.7: Example Power Spectrum of Frequency Hopped Signal with BPSK
Modulation (Rb=1Mbps, fh = 11MHz,12MHz, 13MHz, 14MHz)

Sd(f) resulting in

S(f) ≈ PTb
2N2

NX
k=1

£
sinc2 ((f − fk − fc)Tb) + sinc

2 ((f + fk + fc)Tb)
¤
...

+

µ
1− 1

N

¶
PTb
2N

NX
k=1

£
sinc2 ((f − fk − fc)Tb) + sinc

2 ((f + fk + fc)Tb)
¤

=
PTb
2N

NX
k=1

£
sinc2 ((f − fk − fc)Tb) + sinc

2 ((f + fk + fc)Tb)
¤

(4.14)

which is an intuitively satisfying result as it says that the PSD of the frequency-
hopped signal is the sum of N replicas of the information signal PSD each
centered at the hopping frequencies. An example is plotted in Figure 4.7 for
Rb=1Mbps and hop frequencies of 11MHz, 12MHz, 13MHz, and 14MHz (i.e., 4
hop frequencies)
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4.4 Performance of FH/SS
As with DS/SS, FH/SS results in no performance benefit in AWGN channels.
This can be readily seen by examining the dehopped signal. If we use BPSK
modulation, the received signal after despreading is

ỹ(t) = r̃(t)h̃∗(t)

=
³
h̃(t)b(t) + n(t)

´
h̃∗(t)

= b(t) + n(t)h̃∗(t) (4.15)

Now, if the hop sequence is completely random, dehopping will not impact the
noise characteristics. Thus, the performance of coherent BPSK with coherent
hopping results in a probability of error

Pb = Q

Ãr
2Eb

No

!
(4.16)

and other modulation schemes also achieve the same performance as without
frequency hopping. Now consider a narrowband noise jammer with bandwith B.
Assuming that the jammer knows the frequency band of the signal of interest,
and Nj = J/B, the performance without frequency hopping is

Pb = Q

Ãs
1

No

2Eb
+

Nj

2Eb

!
(4.17)

which is plotted in Figure 4.8 (curve labeled "Narrowband Signal") for Eb
No

=

20dB and Eb
Nj

= 10dB. We see that the presence of the jammer results in a
probability of error of approximately 0.1%. Now, consider a frequency hop-
ping signal which randomly hops to N different frequency bands. Since the
frequency hopper will land in the band of the jammer only 1 out of N hops, the
performance becomes

Pb =
1

N
Q

Ãs
1

No

2Eb
+

Nj

2Eb

!
+

N − 1
N

Q

Ãr
2Eb

No

!
(4.18)

which is also plotted in Figure 4.8 for the same parameters, but allowing N
to vary. Obviously, as we let N increase, we are impacted by the jammer less
frequently, improving performance. We can also plot the performance vs. Eb

Nj
as

shown in Figure 4.9. The benefit of frequency hopping is evident, although this
gain is clearly diminshed as Eb

Nj
increases. Note that the gains are different than

DS/SS shown in the previous chapter. With DS/SS the received signal is always
subject to intereference albeit at reduced levels after despreading. In FH/SS
the effective power level of the jammer is not reduced, rather the frequency of
the jammer’s impact is reduced.
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Figure 4.8: Performance of BPSK Narrowband Signal and BPSK Frequency-
Hopped Signal in the Presence of Narrowband Interference (Eb/Nj=10dB,
Eb/No=20dB)
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Figure 4.9: Performance of Narrowband BPSK Signal and Frequency-Hopped
BPSK Signal in the Presesnce of a Narrowband Jammer

¡
Eb
No = 20dB,N = 64

¢



12 CHAPTER 4. FREQUENCY HOPPED SPREAD SPECTRUM

-10 -8 -6 -4 -2 0 2 4 6 8

10-12

10-10

10-8

10-6

10-4

10-2

100

Eb/Nj (dB)

Fr
am

e 
E

rro
r R

at
e

Narrow Band Signal
Frequency Hopping 

Figure 4.10: Performance of Narrowband BPSK and Frequency Hopped BPSK
with Generic Block Coding

Now consider the use block codes which can correct up to e errors out of a
block of B bits. The probability of codeword error can be written as

Pw = 1− Pc

= 1−
eX

i=0

µ
B
i

¶
(1− Pb)

31−i(Pb)
i (4.19)

As an example, consider the previous example but with error correction coding
on top of frequency hopping. Specifically, assume B=64 and e=5 and N=64.
The resulting performance of standard coherent BPSK with block coding is
plotted in Figure 4.10 along with the performance of frequency hopping with
coding. We can see that the combination of frequency hopping and error cor-
rection coding provides a tremendous improvement in the presence of jamming.
While coding improves narrowband performance, the combination of FH and
coding is especially powerful. We will examine the performance FH/SS in more
detail in Chapter 10.
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Figure 4.11: Transmitter for Hybrid DS/FH Spread Spectrum System

4.5 Other Techniques
In addition to DS/SS and FH/SS there are several other forms of spread spec-
trum. Three specific forms of spread spectrum that we will discuss in this section
include

• hybrid DS/FH/SS

• chirp modulation

• time hopping

4.5.1 Hybrid DS/FH/SS

Another common form of spread spectrum is known as Hybrid DS/FH/SS which
combines frequency hopping and direct sequence techniques. The technique is
described in Figures 4.11 and 4.12. As described in Figure 4.11 the data signal is
first spread using a direct sequence technique and then further spread by hopping
the center frequency to one of N hop frequencies. This technique is useful for
obtaining extremely high spreading factors since it can spread the bandwidth
more than either DS/SS or FH/SS alone. Additionally, this technique increases
the complexity needed for an interceptor and provides benefits of both DS and
FH.

4.5.2 Chirp Modulation

Chirp modulation is another form of spread spectrum which linearly increases
the transmit frequency over the symbol duration. That is the frequency is

f1 + µt 0 ≤ t ≤ Ts (4.20)
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Figure 4.12: Receiver for Hybrid DS/FH Spread Spectrum System

where f1 is the initial frequency and µ = df
dt is the rate of the chirp. The

transmit signal is then

cos (2π(f1 + µt)t+ φ) 0 ≤ t ≤ Ts (4.21)

An example (f1 = 10kHz, µ = 90MHz, and Ts = 1ms) is plotted in Figure
4.13. Note that up-chirp signals and down-chirp signals are possible. In fact
one method of modulation is the use of an up-chirp for ’1’ and down-chirp for
’0’.

4.5.3 Time Hopping (Ultra Wideband)

The final spread spectrum technique that we will discuss is Time Hopped Spread
Spectrum (TH/SS). Time hopping is typically used with pulse position modu-
lation (PPM), thus we briefly describe PPM first. Binary PPM is described in
Figure 4.14. With PPM, the position of the pulse is moved forward or backward
from the nominal symbol time by δ seconds based on the data being sent. Pro-
vided that the pulses are non-overlapping, the modulation scheme is orthogonal
and achieves the performance equivalent to any orthogonal modulation scheme.
In other words

Pb = Q

Ãr
Eb

No

!
(4.22)

However, depending on the pulse shape used, slightly better performance can
be obtained with non-orthogonal pulses.
To improve the probability of intercept, as well as to reduce the impact of

jamming, time hopping can be added to PPM. In order to allow additional
time modulation for time hopping, a frame time is defined as shown in Figure
4.16. A single pulse is transmitted each frame where the frame duration Tf is
much larger than the pulse duration Tp. The bandwidth is determined by the
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Figure 4.13: Example of an Up-chirp Time Waveform
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Figure 4.14: Pulse Position Modulation

pulse duration Tp while the data rate is proportional to the pulse repitition rate
Rf = 1/Tf . Time hopping modulates the position of the pulse within the frame
as shown in Figures 4.17. Further, this additional modulation is pseudo-random
which makes unauthorized detection and jamming more difficult.
The frame size depends on the number of possible time hopping positions

which have granularity Tc (Figure 4.17). Additionally, multiple (Ns)pulses can
be transmitted per information bit, which decreases the data rate, increasing
the spreading factor B/Rb. This is described in Figure 4.14. The final form of
the transmit signal can be expressed as

s(t) =
∞X

i=−∞
Ap
¡
t− iTf − ciTc − δdbj/Nsc

¢
(4.23)

where cj represents the pseudo-random time hopping code and dj represents the
data modulation. Demodulation is accomplished by first de-hopping the signal
and then performing maximimum likelihood detection on the PPM signal.

4.6 Conclusions
In this chapter we have briefly introduced frequency-hopped spread spectrum
and other less common forms of spread spectrum. We will discuss the perfor-
mance of FH/SS in detail in Chapter 9. In the next chapter we will discuss the
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properties of the spreading waveforms that are vital to the proper operation of
spread spectrum.
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