
Chapter 3

Direct Sequence Spread
Spectrum

In Chapter 2 we presented a motivation for the use of a communication signal
whose bandwidth is much larger than the data rate being sent. In this chapter we
begin our discussion of specific techniques to accomplish this. The first spread
spectrum technique described is called Direct Sequence Spread Spectrum or
DS/SS.

3.1 Definition/Description

Direct sequence spread spectrum is perhaps the most common form of spread
spectrum in use today. DS/SS accomplishes bandwidth spreading through the
use of a high rate symbol sequence which directly multiplies the information
symbol stream. Since the symbol sequence has a rate much higher than the
data rate, the bandwidth is increased. The simplest form of DS/SS uses BPSK
modulation with BPSK spreading and is illustrated in Figure 3.1. Note that
this is equivalent to a standard BPSK system with a matched filter receiver with
the addition of the spreading and despreading process. Note that the receiver
is equivalent to a matched filter provided that square pulses are used. If pulse
shaping is employed, the simple integrator should be replaced by a filter that is
matched to the pulse shape used. The transmit signal can be represented by

s(t) =
√
2Pa(t) cos (2πfct+ θd(t))

=
√
2Pa(t)b(t) cos (2πfct) (3.1)

where θd(t) is the binary phase shift due to the information sequence, b(t) =P∞
i=−∞ bipb(t − iTb) is the information signal where bi ∈ {+1,−1} represent

the information bits, each bit has duration Tb, pb(t) is the pulse shape used
for the information waveform (assumed to be rectangular), a(t) is the spreading
signal where each symbol (usually called a ’chip’) has duration Tc = Tb

N , fc is the
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Figure 3.1: Transmitter and Receiver Block Diagram for BPSK Spreading and
BPSK Modulation

center frequency of the transmit signal, P is the power of the signal and N is the
bandwidth expansion factor also sometimes called the spreading gain. Example
waveforms for the case of rectangular pulses are given in Figure 3.2. It can be
seen that the chip rate is N times that of the bit rate, resulting in a signal whose
bandwidth is much larger than necessary for transmission of the information.
Specifically, as we will show shortly, the bandwidth is commensurate with the
chip rate or N times what a traditional BPSK signal would be. We will discuss
the performance of DS/SS in more detail in Chapter 8.
At the receiver, the opposite operations are performed. Specifically, the sig-

nal is first down-converted to baseband1. After down-conversion, the signal is
despread and passed to a standard BPSK detector. This process can be envi-
sioned in two ways. First, we can view the spreading/despreading operations as
transparent additions to a standard BPSK transmit/receiver pair. The spread-
ing is applied after BPSK symbol creation and despreading occurs before the
BPSK detector. Secondly, we can view DS/SS as a BPSK modulation scheme
where the ’pulse’ is the spreading waveform. Thus, at the receiver the despread-
ing operation can be viewed as part of a correlator version of a matched filter
receiver.
At the receiver, the received signal can be modeled as

r(t) = s(t) + n(t) (3.2)

=
√
2Pa(t)b(t) cos (2πfct) + n(t)

1Despreading can also be done at IF, although baseband is currently more common.
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Figure 3.2: Example Data and Chip Sequences for DS/SS with BPSK informa-
tion and BPSK spreading

where n(t) is bandpass Additive White Gaussian Noise (AWGN). The maximum
likelihood receiver then calculates the decision statistic as

Z =

Z Tb

0

r(t)a(t) cos (2πfct) dt (3.3)

=

Z Tb

0

³√
2Pa(t)b(t) cos (2πfct)

´
a(t) cos (2πfct) dt...

+

Z Tb

0

n (t) a(t) cos (2πfct) dt (3.4)

=

Z Tb

0

³√
2Pa2(t)b(t)cos2 (2πfct)

´
dt+N

where we have assumed perfect phase coherence, bit timing and chip timing and
N is the noise at the output of the matched filter. Now, in BPSK spreading,
the spreading signal a(t) can be modeled as

a(t) =
∞X

i=−∞
aipc (t− iTc) (3.5)

where ai ∈ {+1,−1} is the spreading sequence and pc(t) is the chip pulse shape,
assumed to be rectangular for this discussion. We will discuss the properties of
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the spreading sequence in Chapter 5. It can be readily discerned that a2(t) =
1. Further, ignoring the double frequency term in (3.3), the decision statistic
becomes

Z =

√
2PTb
2

b0 +N

where we have assumed that pb(t) is a rectangular pulse of duration Tb and N
is due to AWGN and will be analyzed later. Thus, we can see that we obtain a
decision variable that is comprised of the original bit along with a noise term,
just as in standard BPSK. We will analyze the performance of this scheme
shortly.

3.2 Quadrature spreading
Until this point we have considered only the simplest form of DS/SS, BPSK
spreading with BPSK modulation. In general many modulation formats are
theoretically possible, including PSK and PAM. However, PAM formats are not
generally used because (a) an unmodulated carrier makes it easier to detect
(i.e., by an interceptor) and (b) it is less energy efficient than PSK. General
PSK formats are common including BPSK, QPSK, and MSK. Additionally,
QPSK spreading can be used in addition to general PSK data modulation. The
transmitter for such a case is illustrated in Figure 3.3. The output of the phase
modulator is passed through a quadrature hybrid circuit which produces the
original phase modulated signal and a version 90o out of phase (i.e., delayed by
π/2. The top branch is then spread by a binary spreading waveform (termed
the in-phase portion of the spreading waveform) and the bottom branch is inde-
pendently spread by a negated version of a second binary spreading waveform
(the quadrature portion of the spreading waveform). Using separate spreading
codes in this manner improves the phase characteristics of the signal making it
more difficult to detect in military applications and reducing its impact to other
signals in commercial applications [4].
The receiver for QPSK spreading is given in Figure 3.4. Despreading is ac-

complished by removing both in-phase and quadrature portions of the spreading
waveform as shown. Other versions of the receiver are possible, with either IF
despreading or baseband despreading. That latter is depicted in Figure 3.4. The
motivation for the receiver structure will become more obvious after we discuss
the complex baseband notation for DS/SS in the next section.

3.3 Complex Baseband Representation
The model assumed in the previous section can at times be cumbersome since we
must maintain the sinusoidal carrier. Thus, it is more convenient to use complex
baseband (or complex envelope) notation. The complex baseband notation is
derived from the following observation of bandpass signals. Any bandpass signal
v(t) can be written as

v(t) = <
©
ṽ(t)ej2πfct

ª
(3.6)
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where ṽ(t) is a complex baseband signal. ṽ(t) is thus referred to as the complex
baseband equivalent of v(t). Whenever possible, we will use complex baseband
notation in this text. Thus, the complex baseband version of the transmit signal
for DS/SS with BPSK spreading is

s̃(t) =
√
Pa(t)b(t) (3.7)

Note that we will use˜ to represent complex baseband quantities and that the
power of a bandpass signal is 12 the power in the complex baseband. Whenever
x̃(t) appears, context will determine whether x(t) is a baseband or bandpass
signal. If the latter, it will be understood that we are dealing with a complex
baseband equivalent. In the former case, we will be referring to a complex
version of a baseband signal. The received signal can be represented in complex
baseband as

r̃(t) = s̃(t) + ñ (t) (3.8)

=
√
Pa(t)b(t) + ñ(t)

where ñ(t) is a complex Gaussian random process which represents the thermal
noise.
Complex baseband notation can be particularly useful for QPSK spreading

formats. For example, consider the transmit waveform described in Figure 3.3.
Specifically,

s(t) =
√
2PaI(t) cos (ωct+ θd(t))−

√
2PaQ(t) sin (ωct+ θd(t)) (3.9)

where aI(t) is the in-phase portion of the spreading waveform, aQ(t) is the
quadrature portion of the spreading waveform, and θd(t) is the data-induced
phase modulation. Now using basic trigonometric identities we can rewrite
(3.9) as

s(t) =
√
2PaI(t) [cos (ωct) cos (θd(t))− sin (ωct) sin (θd(t))]
−
√
2PaQ(t) [sin (ωct) cos (θd(t)) + cos (ωct) sin (θd(t))]

=
√
2P [aI(t) cos (θd(t))− aQ(t) sin (θd(t))] cos (ωct)

−
√
2P [aI(t) sin (θd(t)) + aQ(t) cos (θd(t))] sin (ωct) (3.10)

Thus, the complex baseband version of the transmit signal is

s̃(t) =
√
P [aI(t) cos (θd(t))− aQ(t) sin (θd(t))] ...

+j
√
P [aI(t) sin (θd(t)) + aQ(t) cos (θd(t))] (3.11)

=
√
P (aI(t) + jaQ(t)) [cos (θd(t)) + j sin (θd(t))]

=
√
P ã(t)d̃(t) (3.12)

where ã(t) is the complex spreading code and d̃(t) is the complex phase modu-
lation. Thus, we can view spreading in baseband as a simple complex multiply
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which can be done prior to modulation. Despreading is thus accomplished as

ỹ(t) = s̃(t)ã∗ (t)

=
√
P
¡
a2I(t) + a2Q(t)

¢
[cos (θd(t)) + j sin (θd(t))]

=
√
P [cos (θd(t)) + j sin (θd(t))] (3.13)

Note that a2I(t) + a2Q(t) = 1 since typically ã(t) is defined such that |ã(t)|2 =
1. Throughout this text we will use the complex baseband notation whenever
possible.

3.4 Power Spectral Density of DS/SS

The power spectral density (PSD) of DS/SS depends on the modulation scheme
used as well as the pulse shape used. To this point we have assumed the use of
square pulses for convenience. Based on the Wiener-Khintchine Theorem the
PSD [1] of a random process is the Fourier Transform of the autocorrelation
function of that process. For a PAM signal of the form

x(t) =
∞X

i=−∞
aip(t− iTs) (3.14)

where ai are arbitrary pulse amplitudes and p(t) is the pulse shape, the power
spectral density can be shown to be [3]

Sx(f) =
|P (f)|2

Ts

∞X
k=−∞

R(k)e−j2πfkTs

where P (f) is the Fourier Transform of the pulse shape, R(k) = aiai+k is the
autocorrelation function of the data sequence, and Ts is the symbol duration.
Now, if the data is uncorrelated2

R(k) =

½
a2i k = 0

aiai+k k 6= 0

=

½
σ2a +m2

a k = 0
m2
a k 6= 0 (3.15)

2Note that this is an approximation for the DS/SS spreading waveform since the spread-
ing code is pseudo-random and periodic. For extremely long spreading codes, however, this
approximation is very good.
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where ma and σ2a are the mean and variance of the data amplitude sequence
respectively. Returning to the power spectral density we have

Sx(f) =
|P (f)|2

Ts

∞X
k=−∞

R(k)e−j2πfkTs

=
|P (f)|2

Ts

Ã
σ2a +m2

a

∞X
k=−∞

e−j2πfkTs

!

=
|P (f)|2

Ts

Ã
σ2a +m2

a

∞X
k=−∞

δ

µ
f − k

Ts

¶!

=
σ2a
Ts
|P (f)|2 + m2

a

Ts

∞X
k=−∞

¯̄̄̄
P

µ
k

Ts

¶¯̄̄̄2
δ

µ
f − k

Ts

¶
(3.16)

Now for phase modulation ma = 0 and σ2a = 1. Further, if square pulses are
assumed, P (f) = Tssinc (Tsf). Thus,

Sx(f) = Tssinc
2 (Tsf) (3.17)

Since both the spreading waveform and the data waveform have the same format,
we have the power spectral density of both. Now it remains to find the PSD of
the transmitted waveform.
The transmitted signal s̃(t) is an ergodic random process and the power

spectral density can be found from the Fourier Transform of the autocorre-
lation function. Since the data and the spreading sequence are independent,
the autocorrelation function of the transmit signal is the multiplication of the
autocorrelation functions of the two signals. That is

s̃(t) =
√
Pa(t)b(t) (3.18)

Now,

Rs(τ) = E {s̃(t)s̃∗(t+ τ)}
= E {a(t)b(t)a(t+ τ)b(t+ τ)}
= E {a(t)a(t+ τ)}E {b(t)b(t+ τ)}
= Ra(τ)Rb(τ) (3.19)

The power spectral density is then the Fourier Transform of the autocorre-
lation function:

S(f) =

Z ∞
−∞

Sb(φ)Sa(f − φ)dφ

=

Z ∞
−∞

Tbsinc
2 (φTb)Tcsinc

2 ([f − φ]Tc) dφ

=

Z ∞
−∞

Tbsinc
2 (φTb)

Tb
N
sinc2

µ
[f − φ]

Tb
N

¶
dφ (3.20)
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Figure 3.5: Illustration of Spectrum in Direct Sequence

Now, examining the last line in (3.20) we can see that if N >> 1, the second
term will be approximately constant over the significant values of the first term.
Thus,

Sx(f) ≈
Tb
N
sinc2

µ
fTb
N

¶Z ∞
−∞

Tbsinc
2 (φTb) dφ

≈ Tb
N
sinc2

µ
fTb
N

¶
(3.21)

An illustrative sketch of the spectra (main lobe only) for the original information
signal and the signal after spreading is plotted in Figure 3.5. A more concrete
example is plotted in Figure 3.6 for N=128. From the perspective of the
spread signal the information signal sb(t) appears to be a strong narrowband
tone. From the perspective of the narrowband signal (see inset) the spread
signal appears to be white noise. Further, we can see that the bandwidth of the
spread signal is N times that of the original information signal. Thus, we call N
the bandwidth expansion factor which is closely related to the processing gain.
The PSD of the bandpass signal can be shown to be

Ss(f) ≈
A2Tc
4

"µ
sinπ(f − fc)Tc
π(f − fc)Tc

¶2
+

µ
sinπ(f + fc)Tc
π(f + fc)Tc

¶2#
(3.22)

where A is the signal amplitude.
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Figure 3.6: Example Spectrum for BPSK Signal

3.5 Performance in AWGN

The decision statistic of a BPSK signal with BPSK spreading in an AWGN
channel was shown to be

Z =

√
2PTb
2

b+N (3.23)

whereN is a zero mean Gaussian random variable with variance σ2 = NoTb
4 . The

performance of the maximum likelihood receiver in AWGN can be determined
using

Pb = Q

⎛⎝s E {Z}2

var {Z}

⎞⎠ (3.24)

Now, from equation (3.23) we know that

E {Z} = Tb

√
2P

2
b (3.25)

and

var {Z} = NoTb
4

(3.26)
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Thus,

Pb = Q

Ãs
T 2b

2P
4

NoTb
4

!

= Q

Ãr
2PTb
No

!

= Q

Ãr
2Eb

No

!
(3.27)

which is equivalent to BPSK without spreading. Thus, spreading provides no
performance benefit in AWGN.

3.6 Resistance to Jamming
As we saw in the last section, DS spread spectrum has no benefit in an AWGN
channel. The performance benefit is found in other channels such as fading and
jamming. We will study both in detail later in this text. Now we will briefly
demonstrate the benefit in one type of jamming scenario, the tone jammer.
Consider a BPSK DS/SS signal

s(t) =
√
2Pa(t)b(t) cosωct (3.28)

and a jamming signal defined as

j(t) =
√
2J cosωct (3.29)

For a received signal r(t) = s(t) + j(t) we have an input signal to interference
ratio of

S

I
=

E
©
s2 (t)

ª
E {j2 (t)} =

P

J
. (3.30)

The power spectral density of the received signal, assuming that s(t) and j(t)
are uncorrelated is

Sr(f) =
A2Tc
4

£
sinc2 ((f − fc)Tc) + sinc

2 ((f + fc)Tc)
¤
+
J

2
[δ(f − fc) + δ(f + fc)]

(3.31)
If we assume that a simple matched filter receiver is used, the decision statis-

tic is

Z =

Z Tb

0

r(t)a(t) cosωctdt (3.32)

If we define y(t) = r(t)a(t) we can find the resulting signal-to-noise ratio after
despreading. The power spectral density of y(t) is [2]

Y (f) =
PTb
2

£
sinc2 ((f − fc)Tb) + sinc

2 ((f + fc)Tb)
¤

+
JTc
2

£
sinc2 ((f − fc)Tc) + sinc

2 ((f + fc)Tc)
¤

(3.33)
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The desired signal power after despreading was been shown previously to be P .
Now the output jammer power Jout can be determined by examining the second
term in equation (3.33). We can approximate the impact of the matched filter
by using a filter H(f) with an ideal transfer function and a noise equivalent
bandwidth R = 1/T .

Jout =

Z ∞
−∞

Sj(f) |H(f)|2 df

=

Z −fc+1/2T
−fc−1/2T

Sj(f)df +

Z fc+1/2T

fc−1/2T
Sj(f)df

≈
Z −fc+1/2T
−fc−1/2T

JTc
2

£
sinc2 ((f − fc)Tc) + sinc

2 ((f + fc)Tc)
¤
df

+

Z fc+1/2T

fc−1/2T

JTc
2

£
sinc2 ((f − fc)Tc) + sinc

2 ((f + fc)Tc)
¤
df

≈ JTc
2

1

Tb
+

JTc
2

1

Tb

=
JTc
T

=
J

N
(3.34)

Thus, the signal to interference ratio after despreading is

S

I
=

PN

J
(3.35)

and despreading has provided a gain of N to the signal-to-interference ratio.
This gain is termed the spreading gain and can be seen in the spectra of an
example. Figure 3.7 presents the baseband spectra of a spread signal (N=100)
and a tone jammer (note that the frequency is not commensurate with the de-
sired signal carrier in this case)with P

J = 1. Figure 3.8 presents the spectrum
of the joint output signal after despreading with an incorrect alignment of the
spreading waveform. Thus, proper despreading is not taking place. The spec-
trum of the jammer is spread over the same band as the desired signal (which
has not been despread). Figure 3.9 presents the spectrum of the joint output
signal after despreading with a correct alignment of the spreading waveform.
Now we see that while the jammer remains spread over the band of the origi-
nal desired signal, the desired signal spectrum has collapsed to the band of the
information signal ( 1N times the original bandwidth). Subsequent filtering will
remove most of the jammer’s power.

3.7 Conclusion
In this chapter we have introduced the concept of Direct Sequence Spread Spec-
trum (DS/SS), described common implementations and demonstrated one situ-
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Figure 3.7: Spectrum of Received DS/SS Signal and Tone Jammer

ation where DS/SS provides performance benefits (viz. in the presence of a tone
jammer). We will more fully investigate the performance of DS/SS in Chapter
8. In the following chapter we will introduce other forms of spread spectrum
including Frequency Hopping and Ultra-Wideband.



14 CHAPTER 3. DIRECT SEQUENCE SPREAD SPECTRUM

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

100

200

300

400

500

600

700
Desired Signal
Jamming Signal

Figure 3.8: Spectrum of DS/SS and Tone Jammer after Incorrect Despreading
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