

i.e., $|H_a(j\Omega)|$ approximates zero within an

· Minimum stopband attenuation

 $\alpha_s = -20\log_{10}(\delta_s)$ dB

- Two parameters completely characterizing a Butterworth lowpass filter are Ω_c and N
- · These are determined from the specified bandedges Ω_p and Ω_s , and minimum passband magnitude $1/\sqrt{1+\varepsilon^2}$, and maximum stopband ripple 1/A

Ω_c and N are thus determined from		
_ 1	$ H_{i}(i\Omega_{i}) ^{2} = -1$	
$1+\varepsilon^2$	$\left H_a(j\Omega_p)\right ^2 = \frac{1}{1 + (\Omega_p)^2}$	
1	III (10 x 2	
$\frac{1}{2N} = \frac{1}{A^2}$	$ H_a(j\Omega_s) = \frac{1+(\Omega_s)^{-1}}{1+(\Omega_s)^{-1}}$	
$\frac{1}{A^2}$	$\left H_a(j\Omega_s)\right ^2 = \frac{1}{1 + (\Omega_s)}$	

Solving the above we get

$N = \frac{1}{2} \cdot \frac{\log_{10}[(A^2 - 1)/\varepsilon^2]}{\log_{10}(\Omega_s/\Omega_p)} =$	$\log_{10}(1/k_1)$
$\log_{10}(\Omega_s/\Omega_p)$	$\log_{10}(1/k)$

- obtained is rounded up to the next highest integer
- This value of N is used next to determine by satisfying either the stopband edge or the passband edge specification exactly
- If the stopband edge specification is satisfied, then the passband edge specification is exceeded providing a safety margin

Butterworth Approximation

· Transfer function of an analog Butterworth lowpass filter is given by

$$H_a(s) = \frac{C}{D_N(s)} = \frac{\Omega_c^N}{s^N + \sum_{\ell=0}^{N-1} d_{\ell} s^{\ell}} = \frac{\Omega_c^N}{\prod_{\ell=1}^N (s - p_{\ell})}$$

$$p_{\ell} = \Omega_c e^{j[\pi(N+2\ell-1)/2N]}, \quad 1 \le \ell \le N$$

- Denominator $D_N(s)$ is known as the Butterworth polynomial of order N
- Example Determine the lowest order of a Butterworth lowpass filter with a 1-dB cutoff frequency at 1 kHz and a minimum attenuation of 40 dB at 5 kHz

Now
$$10\log_{10}\left(\frac{1}{1+\varepsilon^2}\right) = -1$$
 which yields $\varepsilon^2 = 0.25895$

and

and
$$10\log_{10}\left(\frac{1}{A^2}\right) = -40$$
 which yields $A^2 = 10,000$

• Therefore
$$\frac{1}{k_1} = \frac{\sqrt{A^2 - 1}}{\varepsilon} = 196.51334$$

and

$$\frac{1}{k} = \frac{\Omega_s}{\Omega_p} = 5$$

• Hence

$$N = \frac{\log_{10}(1/k_1)}{\log_{10}(1/k)} = 3.2811$$

• We choose N = 4

• Typical magnitude response plots of the analog lowpass Type 1 Chebyshev filter of order N: • Typical magnitude response of an N-th order analog lowpass Type 1 Chebyshev filter is given by $|H_a(s)|^2 = \frac{1}{1+\varepsilon^2 T_N^2(\Omega/\Omega_p)}$ where $T_N(\Omega)$ is the Chebyshev polynomial of order N: $|T_N(\Omega)| = \begin{cases} \cos(N\cos^{-1}\Omega), & |\Omega| \le 1 \\ \cosh(N\cosh^{-1}\Omega), & |\Omega| > 1 \end{cases}$ • Typical magnitude response plots of the analog lowpass Type 1 Chebyshev filter are shown below $|T_N(\Omega)| = \begin{cases} \cos(N\cos^{-1}\Omega), & |\Omega| \le 1 \\ \cosh(N\cosh^{-1}\Omega), & |\Omega| > 1 \end{cases}$

Elliptic Approximation

• The square-magnitude response of an elliptic lowpass filter is given by $|H_{ij}(Q)|^{2} = \frac{1}{2}$

$$|H_a(j\Omega)|^2 = \frac{1}{1 + \varepsilon^2 R_N^2(\Omega/\Omega_p)}$$
e. $R_{\rm v}(\Omega)$ is a rational function Ω

where $R_N(\Omega)$ is a rational function of order N satisfying $R_N(1/\Omega) = 1/R_N(\Omega)$, with the roots of its numerator lying in the interval $0 < \Omega < 1$ and the roots of its denominator lying in the interval $1 < \Omega < \infty$

• For given Ω_p , Ω_s , ϵ , and A, the filter order can be estimated using $N \cong \frac{2 \log_{10}(4/k_1)}{\log_{10}(1/\rho)}$

$$N \cong \frac{2 \log_{10}(4/k_1)}{\log_{10}(1/\rho)}$$

where
$$k' = \sqrt{1 - k^2}$$

$$\rho_0 = \frac{1 - \sqrt{k'}}{2(1 + \sqrt{k'})}$$

$$\rho = \rho_0 + 2(\rho_0)^5 + 15(\rho_0)^9 + 150(\rho_0)^{13}$$

- Example Determine the lowest order of a elliptic lowpass filter with a 1-dB cutoff frequency at 1 kHz and a minimum attenuation of 40 dB at 5 kHz Note: k = 0.2 and $1/k_1 = 196.5134$
- · Substituting these values we get

$$k' = 0.979796, \qquad \rho_0 = 0.00255135,$$

$$\rho = 0.0025513525$$

- and hence N = 2.23308
- Choose N=3
- Typical magnitude response plots with $\Omega_p = 1$ are shown below

Analog Lowpass Filter Design

- · Example Design an elliptic lowpass filter of lowest order with a 1-dB cutoff frequency at 1 kHz and a minimum attenuation of 40 dB at 5 kHz
- Code fragments used
- [N, Wn] = ellipord(Wp, Ws, Rp, Rs, 's'); [b, a] = ellip(N, Rp, Rs, Wn, 's'); with Wp = 2*pi*1000; Ws = 2*pi*5000;

4

Design of Analog Highpass, Bandpass and Bandstop Filters

Steps involved in the design proces <u>Step 1</u> - Develop of specifications of a prototype analog lowpass filter $H_{LP}(s)$ from specifications of desired analog filter $H_D(s)$ using a frequency transformation

Step 2 - Design the prototype analog lowpass filter Step 3 - Determine the transfer function $H_D(s)$ of desired analog filter by applying the inverse frequency transformation to $H_{LP}(s)$

- Let s denote the Laplace transform variable of prototype analog lowpass filter $H_{LP}(s)$ and s denote the Laplace transform variable of desired analog filter $H_D(\hat{s})$
- The mapping from s-domain to s-domain is given by the invertible transformation

$$s = F(\hat{s})$$

- Then $H_D(\hat{s}) = H_{LP}(s)|_{s=F(\hat{s})}$ $H_{LP}(s) = H_D(\hat{s})|_{\hat{s}=F^{-1}(s)}$
- Spectral Transformation:

$$s = \frac{\Omega_p \hat{\Omega}_p}{\hat{s}}$$

where Ω_p is the passband edge frequency of $H_{LP}(s)$ and $\hat{\Omega}_p$ is the passband edge frequency of $H_{HP}(\hat{s})$

· On the imaginary axis the transformation is

$$\Omega = -\frac{\Omega_p \hat{\Omega}_p}{\hat{\Omega}}$$

- Example Design an analog Butterworth highpass filter with the specifications: $\hat{F}_p = 4 \text{ kHz}, \hat{F}_s = 1 \text{ kHz}, \alpha_p = 0.1 \text{ dB}, \alpha_s = 40 \text{ dB}$
- Choose $\Omega_p = 1$
- Then • Then $\Omega_s = \frac{2\pi \hat{F}_p}{2\pi \hat{F}_s} = \frac{\hat{F}_p}{\hat{F}_s} = \frac{4000}{1000} = 4$ • Analog lowpass filter specifications: $\Omega_p = 1$,
- $\Omega_s = 4$, $\alpha_p = 0.1$ dB, $\alpha_s = 40$ dB Code fragments used

[N, Wn] = buttord(1, 4, 0.1, 40, 's');

[B, A] = butter(N, Wn, 's'); [num, den] = lp2hp(B, A, 2*pi*4000);

· Gain plots

5

Analog Bandpass Filter Design

• Spectral Transformation $s = \Omega \qquad \hat{s}^2 + \hat{\Omega}_o^2$

$$s = \Omega_p \frac{\hat{s}^2 + \hat{\Omega}_o^2}{\hat{s}(\hat{\Omega}_{p2} - \hat{\Omega}_{p1})}$$

where Ω_p is the passband edge frequency of $H_{LP}(s)$, and $\hat{\Omega}_{p1}$ and $\hat{\Omega}_{p2}$ are the lower and upper passband edge frequencies of desired bandpass filter $H_{BP}(\hat{s})$

• On the imaginary axis the transformation is $\Omega = -\Omega_p \frac{\hat{\Omega}_o^2 - \hat{\Omega}^2}{\hat{\Omega} B_w}$

$$\Omega = -\Omega_p \frac{\hat{\Omega}_o^2 - \hat{\Omega}^2}{\hat{\Omega}B}$$

where $B_w = \hat{\Omega}_{p2} - \hat{\Omega}_{p1}$ is the width of passband and $\hat{\Omega}_o$ is the passband center frequency of the bandpass filter

• Passband edge frequency $\pm \Omega_p$ is mapped into $\mp \hat{\Omega}_{p1}$ and $\pm \hat{\Omega}_{p2}$, lower and upper passband edge frequencies

- into $\mp \hat{\Omega}_{s1}$ and $\pm \hat{\Omega}_{s2}$, lower and upper stopband edge frequencies
- · Also,

$$\hat{\Omega}_o^2 = \hat{\Omega}_{p1} \hat{\Omega}_{p2} = \hat{\Omega}_{s1} \hat{\Omega}_{s2}$$

- · If bandedge frequencies do not satisfy the above condition, then one of the frequencies needs to be changed to a new value so that the condition is satisfied
 - Case 1: $\Omega_{p1}\Omega_{p2} > \Omega_{s1}\Omega_{s2}$ To make $\Omega_{p1}\Omega_{p2} = \Omega_{s1}\Omega_{s2}$ we can either increase any one of the stopband edges or decrease any one of the passband edges as shown below

- (1) Decrease $\hat{\Omega}_{p1}$ to $\hat{\Omega}_{s1}\hat{\Omega}_{s2}/\hat{\Omega}_{p2}$ larger passband and shorter leftmost transition band
- (2) Increase $\hat{\Omega}_{s1}$ to $\hat{\Omega}_{p1}\hat{\Omega}_{p2}/\hat{\Omega}_{s2}$ No change in passband and shorter leftmost transition band
- Note: The condition Ω_σ² = Ω_{p1}Ω_{p2} = Ω_{s1}Ω_{s2} can also be satisfied by decreasing Ω_{p2} which is not acceptable as the passband is reduced from the desired value
 Alternately, the condition can be satisfied by increasing Ω_{s2} which is not acceptable as the upper stop band is reduced from the desired value

