
1

Chapter 2
Application Layer

Computer Networking:
A Top Down Approach,
5th diti

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

2: Application Layer 1

5th edition.
Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

following:
If you use these slides (e.g., in a class) in substantially unaltered form,

that you mention their source (after all, we’d like people to use our book!)
If you post any slides in substantially unaltered form on a www site, that

you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

2: Application Layer 2

2

Chapter 2: Application layer

2.1 Principles of
network applications

2.6 P2P applications
2 7 Socket programming network applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.7 Socket programming
with UDP
2.8 Socket programming
with TCP

2: Application Layer 3

Chapter 2: Application Layer
Our goals:

conceptual,
l

learn about protocols
by examining popular

li i l l implementation
aspects of network
application protocols

transport-layer
service models
client-server

application-level
protocols

HTTP
FTP
SMTP / POP3 / IMAP
DNS

i t k

2: Application Layer 4

paradigm
peer-to-peer
paradigm

programming network
applications

socket API

3

Some network apps

e-mail
web

social networks
voice over IPweb

instant messaging
remote login
P2P file sharing
multi-user network
games

voice over IP
real-time video
conferencing
grid computing

2: Application Layer 5

g
streaming stored video
clips

Creating a network app
write programs that

run on (different) end
s st ms

application
transport
network
data link
physical

systems
communicate over network
e.g., web server software
communicates with browser
software

No need to write software
for network-core devices application

transport

application
transport
network
data link
physical

2: Application Layer 6

f
Network-core devices do
not run user applications
applications on end systems
allows for rapid app
development, propagation

p
network
data link
physical

4

Chapter 2: Application layer

2.1 Principles of
network applications

2.6 P2P applications
2 7 Socket programming network applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.7 Socket programming
with UDP
2.8 Socket programming
with TCP

2: Application Layer 7

Application architectures

Client-server
Including data centers / cloud computingIncluding data centers / cloud computing

Peer-to-peer (P2P)
Hybrid of client-server and P2P

2: Application Layer 8

5

Client-server architecture
server:

always-on host
permanent IP address
server farms for
scaling

clients:
communicate with server
may be intermittently

client/server

2: Application Layer 9

may be intermittently
connected
may have dynamic IP
addresses
do not communicate
directly with each other

Google Data Centers

Estimated cost of data center: $600M
G l t $2 4B i 2007 d t Google spent $2.4B in 2007 on new data
centers
Each data center uses 50-100 megawatts
of power

6

Pure P2P architecture

no always-on server
arbitrary end systems arbitrary end systems
directly communicate
peers are intermittently
connected and change IP
addresses

peer-peer

2: Application Layer 11

Highly scalable but
difficult to manage

Hybrid of client-server and P2P
Skype

voice-over-IP P2P application
centralized server: finding address of remote centralized server: finding address of remote
party:
client-client connection: direct (not through
server)

Instant messaging
chatting between two users is P2P
centralized service: client presence
detection/location

2: Application Layer 12

detection/location
• user registers its IP address with central

server when it comes online
• user contacts central server to find IP

addresses of buddies

7

Processes communicating

Process: program running
within a host.

Client process: process
that initiates

within same host, two
processes communicate
using inter-process
communication (defined
by OS).
processes in different

communication
Server process: process

that waits to be
contacted

Note: applications with

2: Application Layer 13

processes in different
hosts communicate by
exchanging messages

Note applications with
P2P architectures have
client processes &
server processes

Sockets

process sends/receives
messages to/from its

host or
server

host or
server

g f
socket
socket analogous to door

sending process shoves
message out door
sending process relies on
transport infrastructure

 th id f d hi h

process

TCP with
buffers,
variables

socket

process

TCP with
buffers,
variables

socket

Internet

controlled by
app developer

2: Application Layer 14

on other side of door which
brings message to socket
at receiving process

controlled
by OS

API: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)

8

Addressing processes

to receive messages,
process must have
identifier

Q: does IP address of
host on which process
runs suffice for
identifying the process?f

host device has unique
32-bit IP address
Exercise: use ipconfig
from command prompt to
get your IP address
(Windows)

identifying the process?
A: No, many processes
can be running on
same

Identifier includes both
IP address and port

mb s ss i t d ith

2: Application Layer 15

(Windows) numbers associated with
process on host.
Example port numbers:

HTTP server: 80
Mail server: 25

App-layer protocol defines

Types of messages
exchanged,

Public-domain protocols:
defined in RFCsexchanged,

e.g., request, response
Message syntax:

what fields in messages &
how fields are delineated

Message semantics
meaning of information in

defined in RFCs
allows for
interoperability
e.g., HTTP, SMTP,
BitTorrent

Proprietary protocols:

2: Application Layer 16

meaning of information in
fields

Rules for when and how
processes send &
respond to messages

e.g., Skype, ppstream

9

What transport service does an app need?

Data loss
some apps (e.g., audio) can
tolerate some loss

Throughput
some apps (e.g.,
multimedia) require

other apps (e.g., file
transfer, telnet) require
100% reliable data
transfer

Timing
some apps (e.g.,
I t t t l h

) q
minimum amount of
throughput to be
“effective”
other apps (“elastic apps”)
make use of whatever
throughput they get

2: Application Layer 17

Internet telephony,
interactive games)
require low delay to be
“effective”

g p y g
Security

Encryption, data
integrity, …

Transport service requirements of common apps

Application Data loss Throughput Time Sensitive

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec

d

2: Application Layer 18

instant messaging no loss elastic yes and no

10

Internet transport protocols services

TCP service:
connection-oriented: setup

UDP service:
unreliable data transfer connection oriented: setup

required between client and
server processes
reliable transport between
sending and receiving process
flow control: sender won’t
overwhelm receiver
congestion control: throttle

f
between sending and
receiving process
does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
throughput guarantee, or

2: Application Layer 19

congestion control: throttle
sender when network
overloaded
does not provide: timing,
minimum throughput
guarantees, security

security

Q: why bother? Why is
there a UDP?

Internet apps: application, transport protocols

Application
Application
layer protocol

Underlying
transport protocol

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (eg Youtube),
RTP [RFC 1889]
SIP, RTP, proprietary

TCP
TCP
TCP
TCP
TCP or UDP

2: Application Layer 20

(e.g., Skype) typically UDP

11

Chapter 2: Application layer

2.1 Principles of
network applications

2.6 P2P applications
2 7 Socket programming network applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.7 Socket programming
with UDP
2.8 Socket programming
with TCP

2: Application Layer 21

Web and HTTP

First some jargon
Web page consists of objectsWeb page consists of objects
Object can be HTML file, JPEG image, Java
applet, audio file,…
Web page consists of base HTML-file which
includes several referenced objects
Each object is addressable by a URL

2: Application Layer 22

Example URL:
www.someschool.edu/someDept/pic.gif

host name path name

12

HTTP overview

HTTP: hypertext
transfer protocoltransfer protocol
Web’s application layer
protocol
client/server model

client: browser that
requests, receives,
“displays” Web objects
server: Web server

PC running
Explorer

Server
running

Apache Web

2: Application Layer 23

server: Web server
sends objects in
response to requests

p W
server

Mac running
Navigator

HTTP overview (continued)

Uses TCP:
client initiates TCP

HTTP is “stateless”
server maintains no client initiates TCP

connection (creates socket)
to server, port 80
server accepts TCP
connection from client
HTTP messages (application-
layer protocol messages)
exchanged between browser

m
information about
past client requests

Protocols that maintain
“state” are complex!
past history (state) must
be maintained

aside

2: Application Layer 24

exchanged between browser
(HTTP client) and Web
server (HTTP server)
TCP connection closed

be maintained
if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

13

HTTP connections

Nonpersistent HTTP
At most one object is

Persistent HTTP
Multiple objects can At most one object is

sent over a TCP
connection.

Multiple objects can
be sent over single
TCP connection
between client and
server.

2: Application Layer 25

Nonpersistent HTTP
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a HTTP client initiates TCP

(contains text,
references to 10

jpeg images)

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3 HTTP server receives request

2: Application Layer 26

URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

14

Nonpersistent HTTP (cont.)

5 HTTP client receives response

4. HTTP server closes TCP
connection.

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

time

2: Application Layer 27

Non-Persistent HTTP: Response time

Definition of RTT: time for
a small packet to travel
from client to server from client to server
and back.

Response time:
one RTT to initiate TCP
connection
one RTT for HTTP

st d fi st f

time to
transmit
file

initiate TCP
connection

RTT
request
file

RTT

fil

2: Application Layer 28

request and first few
bytes of HTTP response
to return
file transmission time

total = 2RTT+transmit time

file
received

time time

15

Persistent HTTP

Nonpersistent HTTP issues:
requires 2 RTTs per object
OS h d f h TCP

Persistent HTTP
server leaves connection
open after sending OS overhead for each TCP

connection
browsers often open parallel
TCP connections to fetch
referenced objects

open after sending
response
subsequent HTTP messages
between same
client/server sent over
open connection
client sends requests as
soon as it encounters a

2: Application Layer 29

soon as it encounters a
referenced object
as little as one RTT for all
the referenced objects

HTTP request message

two types of HTTP messages: request, response
HTTP request message:HTTP request message:

ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close

request line
(GET, POST,

HEAD commands)

header

2: Application Layer 30

Connection: close
Accept-language:fr

(extra carriage return, line feed)

lines

Carriage return,
line feed

indicates end
of message

16

HTTP request message: general format

2: Application Layer 31

Uploading form input

Post method:
Web page often Web page often
includes form input
Input is uploaded to
server in entity body

URL method:
Uses GET method
Input is uploaded in
URL field of request
line:

2: Application Layer 32

www.somesite.com/animalsearch?monkeys&banana

17

Method types

HTTP/1.0
GET

HTTP/1.1
GET POST HEADGET

POST
HEAD

asks server to leave
requested object out of
response

GET, POST, HEAD
PUT

uploads file in entity
body to path specified
in URL field

DELETE
deletes file specified in

2: Application Layer 33

deletes file specified in
the URL field

HTTP response message

HTTP/1.1 200 OK

status line
(protocol

status code /
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

d t d t d t d t d t

status code
status phrase)

header
lines

data e g

2: Application Layer 34

data data data data data ... data, e.g.,
requested
HTML file

18

HTTP response status codes
In first line in server->client response message.
A few sample codes:
200 OK

request succeeded, requested object later in this message
301 Moved Permanently

requested object moved, new location specified later in
this message (Location:)

400 Bad Request

2: Application Layer 35

q
request message not understood by server

404 Not Found
requested document not found on this server

505 HTTP Version Not Supported

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
O TCP ti t t 80Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:
GET /~ross/ HTTP/1.1
H t i l d

By typing this in (hit carriage
return twice) you send

2: Application Layer 36

Host: cis.poly.edu return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

19

User-server state: cookies

Many major Web sites
use cookies

Example:
Susan always access

Four components:
1) cookie header line of

HTTP response message
2) cookie header line in

HTTP request message
3) cookie file kept on

user’s host, managed by
’ b

Internet always from PC
visits specific e-
commerce site for first
time
when initial HTTP
requests arrives at site,

2: Application Layer 37

user’s browser
4) back-end database at

Web site

q
site creates:

unique ID
entry in backend
database for ID

Cookies: keeping “state” (cont.)
client server

ebay 8734
usual http request msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

usual http request msg Amazon server
creates ID

1678 for user create
entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

backend

2: Application Layer 38

p p g

usual http response msg

on w at r action

usual http request msg
cookie: 1678 cookie-

spectific
action

access
ebay 8734
amazon 1678

database

20

Cookies (continued)
What cookies can bring:

authorization
Cookies and privacy:

cookies permit sites to

aside

shopping carts
recommendations
user session state
(Web e-mail)

learn a lot about you
you may supply name
and e-mail to sites

How to keep “state”:

2: Application Layer 39

protocol endpoints: maintain state
at sender/receiver over multiple
transactions
cookies: http messages carry state

Web caches (proxy server)

user sets browser:

Goal: satisfy client request without involving origin server

origin user sets browser
Web accesses via
cache
browser sends all
HTTP requests to
cache

object in cache: cache

client

Proxy
server

g
server

2: Application Layer 40

object in cache cache
returns object
else cache requests
object from origin
server, then returns
object to client

client
origin
server

21

More about Web caching

cache acts as both
client and server

Why Web caching?
reduce response time client and server

typically cache is
installed by ISP
(university, company,
residential ISP)

reduce response time
for client request
reduce traffic on an
institution’s access
link.
Internet dense with
caches: enables “poor”

2: Application Layer 41

caches: enables poor
content providers to
effectively deliver
content (but so does
P2P file sharing)

Caching example
Assumptions

average object size =
1 000 000 bits

origin
servers

public1,000,000 bits
avg. request rate from
institution’s browsers to origin
servers = 15/sec
delay from institutional router
to any origin server and back
to router = 2 sec

C

p
Internet

institutional
network 100 Mbps LAN

15 Mbps
access link

2: Application Layer 42

Consequences
utilization on LAN = 15%
utilization on access link = 100%
total delay = Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

p

institutional
cache

22

Caching example (cont)
possible solution

increase bandwidth of access
link to say 100 Mbps

origin
servers

publiclink to, say, 100 Mbps
consequence

utilization on LAN = 15%
utilization on access link = 15%
Total delay = Internet delay +
access delay + LAN delay

= 2 sec + msecs + msecs

p
Internet

institutional
network 100 Mbps LAN

100 Mbps
access link

2: Application Layer 43

often a costly upgrade
p

institutional
cache

Caching example (cont)

possible solution: install
cache

 h 0 4

origin
servers

public
suppose hit rate is 0.4

consequence
40% requests will be
satisfied almost immediately
60% requests satisfied by
origin server
utilization of access link
reduced to 60%, resulting in

li ibl d l (10

p
Internet

institutional
network 100 Mbps LAN

15 Mbps
access link

2: Application Layer 44

negligible delays (say 10
msec)
total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs +
.4*milliseconds < 1.4 secs

p

institutional
cache

23

Conditional GET

Goal: don’t send object if
cache has up-to-date cached

cache server
HTTP request msg

version
cache: specify date of
cached copy in HTTP request
If-modified-since:

<date>

server: response contains no
object if cached copy is up-
t d t

q g
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg

2: Application Layer 45

to-date:
HTTP/1.0 304 Not

Modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

