

Helsinki University of Technology

S-72.333 Postgraduate Course in Radio Communications (2004/2005)

Overview of Diversity Techniques in Wireless Communication Systems

Hafeth Hourani hafeth.hourani@nokia.com

Presentation Outline

- **Overview**
- **Motivation**
- **Diversity Techniques**
- Diversity Combining Techniques
- Conclusions

Wireless Channel Impairments

Noise

- Thermal noise (modeled as AWGN)
- **Path Loss**
	- The loss in power as the radio signal propagates
- **Shadowing**
	- Due to the presence of fixed obstacles in the radio path

Fading

Combines the effect of multiple propagation paths, rapid movement of mobile units and reflectors

The Effect of Flat Fading Channels

Parameters of Fading Channels

- Multipath Spread T_m
	- It tells us the maximum delay between paths of significant power in the channel
- Coherence Bandwidth (Δf) _c
	- Gives an idea of how far apart –in frequency- for signals to undergo different degrees of fading
- Coherence Time (Δt) _c
	- Gives a measure of the time duration over which the channel impulse response is essentially invariant (highly correlated)
- **Doppler Spread** B_d
	- \triangleright It gives the maximum range of Doppler shift

Classification of Fading Channels

- **Figure** Frequency non-selective If the signal BW $< (\Delta f)$ _c
- **Find Frequency Selective**
	- If the signal BW $> (\Delta f)_{c}$
- **Fast Fading**
	- Symbol duration < (∆t)*c*
- **Slow Fading**
	- Symbol duration > (∆t)*c*

- The fading problem can be solved by adding a fade margin at the transmitter
	- Not a power efficient technique
- **Another solution ...**
- Take the advantage of the statistical behavior of the fading channel:
	- Time correlation of the channel
	- Frequency correlation of the channel
	- Space correlation of the channel

Basic Concept

- The basic concept: Transmit the signal via several independent diversity branches to get independent signal replicas
- In other words, to have diversity, we need
	- Multiple branches
	- lieftable independent fading
	- Process branches to reduce fading probability

- Diversity schemes provides two or more inputs at the receiver such that the fading phenomena among these inputs are *uncorrelated*
- If one radio path undergoes deep fade at a particular point in time, another independent (or at least highly uncorrelated) path may have a strong signal at that input
- If probability of a deep fade in one channel is p , then the probability for *N* channels is p^N

Requirements for Diversity

- 1. Multiple branches
- 2. Low correlation between branches

Diversity Techniques (1/2)

Antenna Diversity

 \triangleright Space Diversity

Horizontal Space Diversity

Vertical Space Diversity

Field Component Diversity (Antenna Pattern Diversity)

- **Polarization Diversity**
- Angle Diversity (Direction Diversity)
- Frequency Diversity
- **Time Diversity**
- Multipath Diversity

Diversity Techniques (2/2)

- Orthogonal Transmit Diversity (OTD)
- Space-Time (S-T) Diversity
- \blacksquare Space-Frequency (S-F) Diversity
- Space-Time-Frequency (S-T-F) Diversity
- Open Loop Transmit Diversity (for 3G)
- Closed Loop Transmit Diversity (for 3G)

Diversity Combining Techniques

- Switching Combining ш
- Selection Combining
- Equal Gain Combining
- Maximal Ratio Combining

Next . . .

- **Overview**
- **Notivation**
- **Diversity Techniques**
- **Diversity Combining Techniques**
- **Conclusions**

- The space correlation properties of the radio channel are used as mean of providing multiple uncorrelated copies of the same signal
- **More hardware (antennas)**

Space Diversity (2/3)

Receiver Space Diversity Ш

M different antennas are used at the receiver to obtain independent fading signals

- Transmitter Space Diversity
	- *M* different antennas are used at the transmitter to obtain uncorrelated fading signals at the receiver
	- The total transmitted power is split among the antennas

Frequency Diversity

- Modulate the signal through *M* different carriers
	- The separation between the carriers should be at least the coherent bandwidth (∆f)*c*
	- Different copies undergo independent fading
- Only one antenna is needed
- The total transmitted power is split among the carriers

Time Diversity

- **The Transmit the desired signal in** *M* different periods of time i.e., each symbol is transmitted *M* times
- **The interval between transmission of same symbol** should be at least the coherence time (Δt) _c

Different copies undergo independent fading

Reduction in efficiency (effective data rate \le real data rate)

Next . . .

- **Overview**
- **Notivation**
- **Diversity Techniques**
- **n** Diversity Combining Techniques
- **Conclusions**

Introduction

For a slowly flat fading channel, the equivalent lowpass of the received signal of branch *i* can be written as

$$
r_i(t) = A_i e^{j\theta_i} s(t) + z_i(t), \quad i = 0, 2, ..., M - 1
$$

- Where $s(t)$ is the equivalent lowpass of the transmitted signal $A_i e^{j\theta_i}$ is the fading attenuation of branch *i* $z_i(t)$ is the AWGN
- Out of *M* branches, *M* replicas of the transmitted signal are obtained

$$
\mathbf{r} = \begin{bmatrix} r_1(t) & r_2(t) & \dots & r_{M-1}(t) \end{bmatrix}
$$

M is the *diversity order*

Select the strongest signal H

The combiner output is given by **III**

$$
y(t) = Ae^{j\theta_i} s(t) + z(t)
$$
, with $A = \max\{A_0, A_1, ..., A_{M-1}\}$

The received SNR can be written as follows: $\left\{ \Gamma_{0},\Gamma_{1},\ldots,\Gamma_{M-1}\right\}$ 2 0 , \blacksquare 1 , \cdots , \blacksquare M \lnot 1 0 $\mathbf{b} = \max \big\{ \Gamma_0, \Gamma_1, \ldots, \Gamma_M \big\}$ $\Gamma = \frac{A^2 E_b}{N_a} = \max \left\{ \Gamma_0, \Gamma_1, \dots, \Gamma_{M-1} \right\}$

With uncorrelated branches, the CDF of Γ is

$$
P_{\Gamma}\left(\gamma\right)=\Pr\left\{ \Gamma<\gamma\right\} =\prod_{i=0}^{M-1}P_{\Gamma i}\left(\gamma\right)
$$

For i.i.d branches, we have

$$
P_{\Gamma}(\gamma) = \left[P_{\Gamma_0}(\gamma) \right]^M, \quad \text{and} \quad p_{\Gamma}(\gamma) = M p_{\Gamma_0}(\gamma) \left[P_{\Gamma_0}(\gamma) \right]^{M-1}
$$

/ Overview of Diversity Techniques / 17.01.2005 hafeth.hourani@nokia.com

Selection Combining (3/3)

For Rayleigh Fading channel

The outage probability $P_{\Gamma}(\gamma) = (1 - e^{-\gamma/\gamma_0})^M$, $\gamma_0 = 2\sigma^2 E_b/N_0$ Asymptotic behavior

Maximal Ratio Combining (MRC) (1/3)

Weight branches for maximum SNR

Maximal Ratio Combining (2/3)

- The combiner output is given by $y(t) = \sum w_i r_i(t)$ \cdot 0*M i i i* $y(t) = \sum_{i} w_{i} r_{i} (t)$ == $=\sum$
- Choose the weights to be the channel gain conjugate [must be estimated]

$$
y(t) = \sum_{i=0}^{M-1} A_i e^{-j\theta_i} r_i(t) = \sum_{i=0}^{M-1} A_i e^{-j\theta_i} \left[A_i e^{j\theta_i} s(t) + z_i(t) \right]
$$

=
$$
\left(\sum_{i=0}^{M-1} A_i^2 \right) s(t) + \sum_{i=0}^{M-1} A_i e^{-j\theta_i} z_i(t)
$$

The SNR of the combined signal is

MRC vs. SC

33

Equal Gain Combining (EGC) (1/2)

- Coherent combining of all branches with equal gain
	- A simplified version of MRC
- Basic concept
	- Each branch signal is rotated by $e^{-j\theta_i}$
	- All branch signals are then added
- The combiner output is given by

$$
y(t) = \sum_{i=1}^{M} e^{-j\theta_i} r_i(t) = \left(\sum_{i=0}^{M} A_i\right) s(t) + \sum_{i=0}^{M} e^{-j\theta_i} z_i(t)
$$

The SNR is given by
$$
\Gamma = \left(\sum_{i=0}^{M-1} A_i\right)^2 \frac{E_b}{MN_0}
$$

Equal Gain Combining (2/2)

Switched Diversity Combining (SDC)

- When the signal quality of the used branch is good, there is no need to look for (to use) other branches
- **Determinal Constructer Constraining Interior** Construction Constr quality deteriorates
- **Two strategies can be used**
	- Switch-and-examine strategy
	- Switch-and-stay strategy
- Switching between branches will introduce discontinuities is the combined signal

Stay with the signal branch until the envelop drops below a predefined threshold

Only one receiver is needed

SDC: Switch-and-Stay Strategy (2/2)

The receiver switches to the strongest of the M-1 other signals only if its level exceeds the threshold

Less signal discontinuities

Optimum Combining

Weight branches to get maximum SNIRH

Transmitter Diversity vs. Receiver Diversity

41

The Effect of Correlation between Branches (1/2)

- **The correlation between branches will always reduce** the diversity gain
- The effect of correlation can be approximately modeled by introducing equivalent average SNR

$$
\gamma'_0 = \gamma_0 \left(1 - |\rho|^2 \right)
$$

The Effect of Correlation between Branches (2/2)

43

Effect of Power Unbalance between Branches

44

Conclusions (1/2)

- The diversity is used to provide the receiver with several replicas of the same signal
- Diversity techniques are used to improve the performance of the radio channel without any increase in the transmitted power
- As higher as the received signal replicas are decorrelated, as much as the diversity gain

Conclusions (2/2)

Diversity Combining

- MRC outperforms the Selection Combining
- Equal gain combining (EGC) performs very close to the MRC. Unlike the MRC, the estimate of the channel gain is not required in EGC
- Among different combining techniques
	- MRC has the best performance and the highest complexity
	- SC has the lowest performance and the least complexity