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Matlab Assignment #1

Thursday 4 October 2007

 Develop an OFDM system with the following components
- S/P
— Mapping model (modulation techniques)
— Coding model (conv, turbo)
— IFFT
- CP
— Channel (Gaussian, SFFF channel)
— Mapping decoding
— Decoding model
— FFT
— CP removal
— Channel Estimation (later)

e Input :pulse shaping, Number of subcarriers, symbol rate, BW, CP
ratio

e Qutput: Signal in time, spectrum, BER, ICI (later), ISI (later)



HW 2 1/2
Due Thursday 4 December

Example 4.1 A certain wideband wireless channel has a delay spread of 1jisec. We assume that in order to

overcome ISI, that Ts = 107.
1. What is the maximum bandwidth allowable in this system?

2. If multicarrier modulation is used, and we desire a 5 MHz bandwidth, what is the required number of

subcarriers?



Single-Carrier Vs Multi-Carrier HW 2/2

Design Parameters

for outdoor channel

Required data rate 1Mbps
RMS delay spread. o 10 ps
Channel Coherence bandwidth, B.= | 20 kHz

1/5c

Frequency selectivity condition

& > Toympa/10

Single Carrier
Approach

Symbol duration, T,y

Frequency selectivity

Comment on ISI

Multicarrier approach

Total number of carriers

128

Data rate per carrier

Symbol duration per carrier

Frequency selectivity

Comment on ISI




Major Learning Objectives

Upon successful completion of the course the student will be
able to:

Describe the complete architecture of an OFDM system, (
serial to parallel, FFT/IFFT, Cyclic prefix, Modulation
techniques, coding techniques)

Evaluate the response of OFDM in Gaussian channels and
fading channels.

Design and analyze standards using OFDM such as IEEE
802.11a,g and IEEE 802.16

Define the problems associated of using multi-carrier in time
varying channels and how to mitigate these problems.

Describe the principle mechanisms by which multiple access
techniques are supported using OFDM.

Able to categorize the different type of MC-CDMA and the
degree of flexibility provided by each type.

Able to simulate the basic and advanced techniques used in
OFDM systems



Syllabus

. Analysis of OFDM systems (15%) 2
— RF subsystems, amplifier classification and distortion
— Crest factor (PAPR) reduction techniques

. Pre-distortion & adaptive pre-distortion techniques

. clipping

. coding techniques

. partial transmit sequences (PTS) & modified PTS v. selective mapping
. nonlinear quantization (companding)

— Phase noise and 1&Q 1imbalance for QAM
— Performance of OFDM in Gaussian channels
— Performance of OFDM in Wide-band channels
. Synchronization and Estimation (15%) 2

— ICI and OISI problems \/

- Timing estimation

— Frequency synchronization

- Frequency error estimation algorithms
— Carrier phase tracking

— equency domain and time domain approaches for channel estrmeat
. coherent detection
differential detection




Our OFDM System Assumptions

= Usage of cyclic Prefix

* Impulse response of the channel shorter than Cyclic Prefix.

= Slow fading effects so that the channel 1s time-1nvariant over
the symbol interval.

= Rectangular Windowing of the transmitted pulses

» Perfect Synchronization of transmitter and receiver

= Additive, white, Gaussian channel noise



The Mobile Multipath Channel
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Channel Estimation Frequency

e Interpolation, or filtering. Assume that known symbols
X(n,k) were transmitted in various positions (tones (n) or
blocks (k) ). Estimate H(n,k) and then interpolate to n’,k’.



Channel Estimation Types

Parametric vs non-parametric
Frequency and time correlation
Training vs blind

Adaptive vs non-adaptive

Parametric - based on a channel model
Non-parametric - based on measurements.
Correlation - estimation is based on previous estimates
Training—> well known symbols

Blind—> based on the statistical properties of the signal

Adaptive - estimation algorithm modified with the
channel variations



OFDM System Model
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System Architecture-2

1 | Input to Time Domain

x(n)= IDFT {X (k)}
n=0,,2,. N-1

Guard Interval
x(N + n),

& (”):{x(n),

3| Channel

Ve =X, (n)@ h(n)+ w(n)

Guard Removal

y(n)= Y (n) n=0,L,.,N-1

5| Output to Frequency Domain

Y (k)= DFT {y(n)}
k=20,,2,., N -1

Output Channel ICI AWGN

Y (k)= X(k)H(k)+lI(k)+lW(l£)
k=0,1,. N-1

7| Channel Estimation ' Estimated

k=0,1l,.,N-1

CH(K)

Channel
()= 28




Frequency Domain Equalization

e For the k" carrier:
x,=H, s +v,

where H, = > h,(nT,) exp(j2n k n/ N) where n =0, ...,. N-1

* Frequency domain equalizer ‘?, e
k k

H'!
e Noise enhancement factor 8% = a%|H L 1 |2
H, 2
5,2 «— bad

+——— good




Channel Estimation

e OFDM uses variations of Quadrature Amplitude Modulation
(QAM) schemes for symbol mapping which require a coherent
detection method in the receiver.

— Naturally, data detection in coherent OFDM receivers require an
accurate (or near accurate) estimate of Channel State Information
(CSI).
e There are two major kinds of channel estimators that are found
in literature:
— Pilot assisted.
— blind estimation.

— A mixture of these two, where a blind method with limited training
symbols is used, is called semi-blind technique.



Types of Channel Estimation

Traditional one-dimensional channel estimation techniques for
the OFDM systems can be summarized as follows:

— Least Squares (LS)

— Minimum Mean Squared Error (MMSE)

— Linear MMSE (LMMSE).

LS estimators are very simple to constitute, but they suffer
from MSE in low SNR conditions.

MMSE, based on time domain estimations, are high
complexity estimators that provide good performance in
sampled-spaced channels, but limited performance in non-
sample spaced channels and high SNR conditions.

LMMSE provides good performance in both sampled and non-
sampled channels



Channel State Information

 In OFDM systems, the Doppler effects are kept smaller by
making sure that the symbol duration 1s much smaller
compared to the channel coherence time.

— In this case, the channel attenuations at successive symbol
durations experience sufficiently higher time correlation.

e Similarly, if subcarrier spacing is chosen in a way that the
spacing 1s much smaller than the coherence bandwidth of the
channel

— The channel attenuations at the adjacent subcarriers will be highly
frequency correlated.

* So, the estimator can exploit both of these two correlation
properties



Channel State Information

Channel estimation of a SISO-OFDM system can be done by using
complete training symbols after certain OFDM data symbols, or by
inserting some training pilot tones in every OFDM symbol.

In the first case, the CSI is estimated with the training symbol and
interpolated for the consecutive symbol before the next training symbol
appears.

— This technique renders unacceptable results when the channel variation
time is comparable to OFDM symbol duration.

The second method is suitable in these kinds of fast varying channels.

The CSI 1s estimated for all the pilot tones using the pilot subcarriers from
that particular symbol and later CSI for all other subcarriers are obtained by
interpolation.

In that way, perfect or near perfect estimates are achievable. But the cost is
paid in significant throughput reduction.



Ideal Channel Estimation

Wireless channels change frequently ~ 10 ms
Require frequent channel estimation

The attenuations of the pilot symbols are measured and the attenuations of
the data symbols between these pilot symbols are typically
estimated/interpolated using time correlation property of fading channel
Many systems use pilot tones — known symbols

— Given s, for k =k, k,, ks, ... solve x, = 2,,_,- h, e1?"kINg  for h,

— Find H, =2, _ " h, e?27kl/N (significant computation)
More pilot tones

— Better noise resilience

— Lower throughput (pilots are not informative)
A

Pilot tones
1 [t A —

magnitude

frequency
>




magnitude

Channel Estimation Via Interpolation

More efficient approach is interpolation

Algorithm
— For each pilot k; find H,, = x,, / s,
— Interpolate unknown values using interpolation filter
- H,=a,,H,+0,,H,+...

Comments

— Longer interpolation filter: more computation, timing sensitivity

N Typical 1dB loss in performance in practical implementation

frequency
>
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Channel Estimation algorithm LS

In a matrix form, the observed symbols after the DFT operation in
the receiver can be written as Fr=Xh+n

where the diagonal matrix X contains the transmitted symbols on
its diagonal (either known pilot symbols or receiver decisions of
information symbols which are assumed to be correct), the channel
attenuations of one OFDM symbol (1.e. Fourier transform of h(t)
evaluated at the frequency f,) 1s collected in vector h and the vector
T contains the observed outputs of the DFT.

If we maximize the channel estimates in the Least-Square (LS)
sense: maximize H"_'_ XE.HE for all possible liz

-, ’-I‘
o =l-. .| Ffo. .rL 'N-—1
}-”.h p— _X T = |: ..Yﬂ -Yl P _.1,{?\.‘__1 :|

This 1s a straight forward estimation technique where the received
symbol on each subcarrier 1s divided by the transmitted symbol to
obtain the estimate.



Least Squares Estimator

_ Y(m,k)
H,  (m, k)= X (m.k)

eDisadvantage: Poor
performance, due to
oversimplified channel
model. Does not take into
account correlations of the
channel.




Channel Estimation algorithm LMMSE

Minimize the mean square error between the actual channel
response and the estimated one by linear transformation to H; ¢

The optimal Linear Minimum Mean-Square Error (LMMSE)
estimate of j; by

- g2
(minimizing £ (Hh N hH ) for all possible linear estimators} )

h'im mee — Aﬁ'!s

— _ _ _ _ N = —_1y 1 _ -
A= RF@I!ESR.;?}:ILES = th (th + ETE (‘X.KH) 1) and th = F (hh-H)
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St < —— and S5 <

Design of Pilot Based Channel Estimator

There are mainly two problems
in designing channel estimators
for wireless OFDM systems.

— The first problem concerns
the choice of how pilots should

be inserted. — =
— The second problem is the S

design of the estimator as a :

low complexity with good . =

channel tracking ability. Time

The pilot symbols should be

inserted properly, so that it ]

successfully estimates the >
frequency response of the Frequency
channel. The difference between

two consecutive pilot symbols in

time and frequency domain, S,

and S, respectively, can be

represented as

1 1

B doppler 'max




Pilot Symbol Assisted Modulation

N, pilot symbols P; are transmitted in the subcarriers within
the total OFDM symbol bandwidth of N subcarriers.

At the receiver, the channel transfer function at the pilot
subcarriers is estimated from the received samples

H(Pa} = T(pi)/Pi.-

The second step, the values of the channel transfer function
are estimated for the unknown data symbols by interpolation
using the abovementioned equation.

The placement of the pilots and the interpolation technique
will influence the quality of the channel estimation



Pilot Arrangement

BLOCK-TYPE PILOT ARRANGEMENT

 Block Type

— All sub-carriers

0000068
0000088
0006000
OOO0000
0000000

0000060
0000060
0000000
OO0OO00
0000000

reserved for pilots with a

specific period

OOO0000
OO00000
OO0000O
OO00000
0000000

OO000OO
OOO0000
000000e
OO00000
258000

Time

Frequency Carriers

e Comb Type

COMB-TYPE PILOT ARRANGEMENT

— Some sub-carriers are

| (000006
@O00000
000000
@O0O0000
@O00000

000000
@ O0O0000
@O00000
| 000000
@O00000

reserved for pilots for

each symbol

@O00000
@O00000
@O00000
@O0O0000
@OO0000

@OO0O000
@OO0000
@OO0000
| 000000
@OO00000

Time

Frequency Carriers



Linear Interpolation

H(PHi) - H;(pi) (n — ;Ui.) for p; <n<pig1.
piy1 — p(¢)

ﬁ(n} = Ff(P-ﬂ) +

e H() is the FT of the h(t).

— In order to sample H(f) according to sampling theorem, the maximum pilot
spacing Ap in OFDM symbol is

N
2

Ap < Af.
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Figure 4-4. Different possibilities for pilot allocation
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Time domain Channel Estimation using Training Sequence

e Conventional estimation schemes send a stream of transmitted
symbols with a modulation scheme known to the receiver, and
the receiver analyzes the effect of the channel on the known
symbols by observing the deviations on the received known
symbols.

e The transmission of training symbols reduces the spectral
efficiency of the system

Rip = HpLy + Wi

s
- 1§ . - *
Hy = 5 (HyLy + Wik + HiLi + Wo ) L

Hy = Hp|Li|* + 5 (Wig+ Way) Ly

L g : "
= Hi + 2 (Wik + Wag) Ly



802.11a System Specification

B

t2

t3

4 [15]16]17[ 18] g1 Gl2 | T T2 | GI| OFDMSymbol | Gi

OFDM Symbol |

Short training sequence: Long training sequence:
AGC and frequency offset  Channel estimation

Sampling (chip) rate: 20MHz
Chip duration: S0ns
Number of FFT points: 64
FFT symbol period: 3.2us
Cyclic prefix period: 16 chips or 0.8us
— Typical maximum indoor delay spread < 400ns
— OFDM frame length: 80 chips or 4us
— FFT symbol length / OFDM frame length = 4/5
Modulation scheme
— QPSK: 2bits/sample
—  16QAM: 4bits/sample
—  64QAM: 6bits/sample

Coding: rate V2 convolutional code with constraint length 7



Channel Estimation Algorithms

- Linear Interpolation
« Second Order Interpolation

« Maximum Likelihood (Least Square in
time domain)

* Linear Minimum Square Error



Frequency(Subcarrier)

Linear Interpolator (I)

» Use two piloted grid closest to the
grid needed to be estimated in LI;

M pilot grids during the same

symbol for MMSE and ML

H (k,m)=Hp(k,m)a+H(k,m,)(1-a)

where a=d,/D;, d <D;

Y

Time (OFDM Symbols)



Weighted Linear Interpolator (II)

» Extending linear to weighted linear

gA(man):

Where

2—‘ n—K; ‘ 41
3(1-27%)
2n—Kf
1-2")

Kf —n+l1

Cll.

a, ®

1- °.
(I-a,) )




Frequency(Subcarrier)

Second Order Interpolation (I)

Time (OFDM Symbols)

\

. Use two piloted grid closest to the grid needed to be
estimated in LI; M pilot grids during the same
symbol for MMSE and ML

H(k,(m—1)XD, +1)=
zclﬁp(k,m—1)+coﬁp(k, m)+c_1I-AIp(k,m+1)

ofa-1)
C, = )
L
whereic, = ~a-1)a+1), a=1/N
o a+1)
c = ,




Performance of (Simplified) Matrix Inversion

30

25 /& %‘*k/::/x

Output SINR

U  Conventional OFDM
¢ MMSE equalization
| = simplified MMSE

Y 10 15 20 25 30

Input SNR
N =64,v =200 km/h, f, =17 GHz, Ty,,s = 1 us, sampling at T = 1s.
Jooppler = 3-15 kHz, Subc. spacing f,,. = 31.25 kHz:
Compare to DVB-T: v = 140 km/h, f, = 800MHz: f,,, - = 100 Hz while f, = 1.17 kHz




10

10

MSE

10

10

10

MSE vs SNR for different grid

=2

-4

|

T

-© Doppler freq. ]
. = 100Hz (diag grid) |]

—©— Doppler freq
- - Doppler freq
—— Doppler freq

-+ Doppler freq.

—+— Doppler freq

= 100Hz (rect grid)

. = 50Hz (rect grid)
. = 50Hz (diag grid)
= 5Hz (rect grid)

. = 5Hz (diag grid)

10

15

20
SNR (dB)



Received and Recovered Signals

J OFDM/Received Signal

File Axes Channels ‘Window Help
Scatter Hlot

1.5
1
R o
x 2
= 5 & 2
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1.5
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In-phase Amplitude
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-
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L
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0.5 a 0.5 1
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15

Received signal phases are distorted by multi-path fading




