Orthogonal Frequency Division Multiplexing and Related Technologies Fall 2007

Mohamed Essam Khedr

Fading Channels

Major Learning Objectives

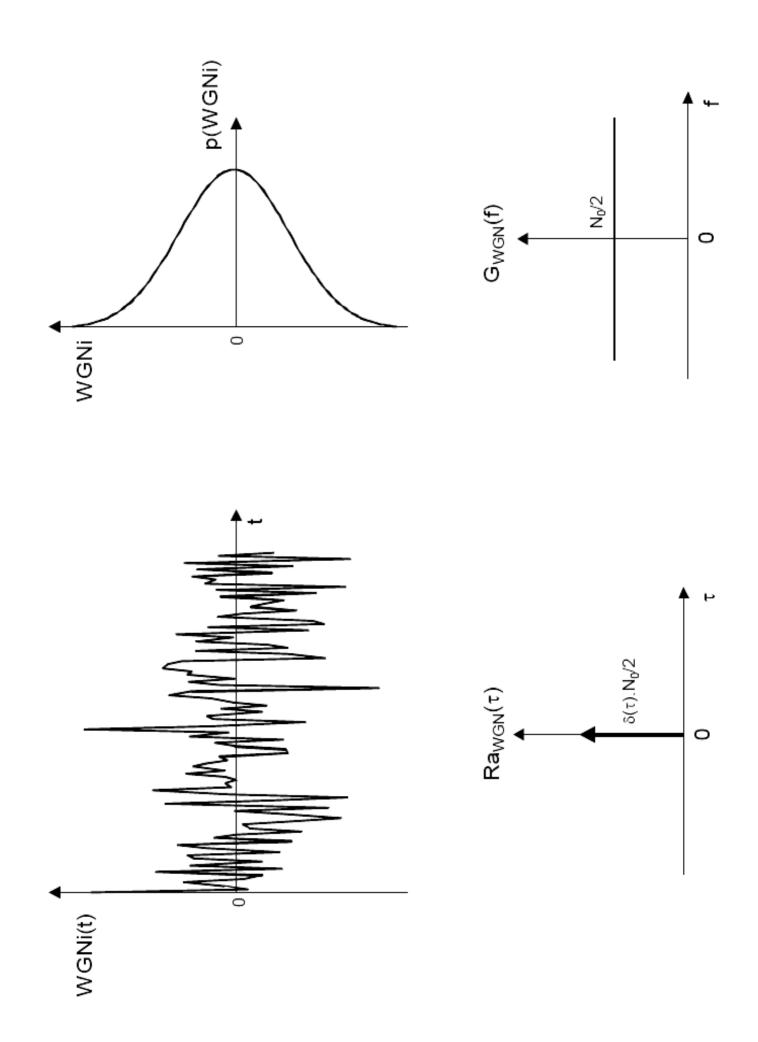
- Upon successful completion of the course the student will be able to:
- Describe the complete architecture of an OFDM system, (serial to parallel, FFT/IFFT, Cyclic prefix, Modulation techniques, coding techniques)
- Evaluate the response of OFDM in Gaussian channels and fading channels.
- Design and analyze standards using OFDM such as IEEE 802.11a,g and IEEE 802.16
- Define the problems associated of using multi-carrier in time varying channels and how to mitigate these problems.
- Describe the principle mechanisms by which multiple access techniques are supported using OFDM.
- Able to categorize the different type of MC-CDMA and the degree of flexibility provided by each type.
- Able to simulate the basic and advanced techniques used in OFDM systems

Textbook

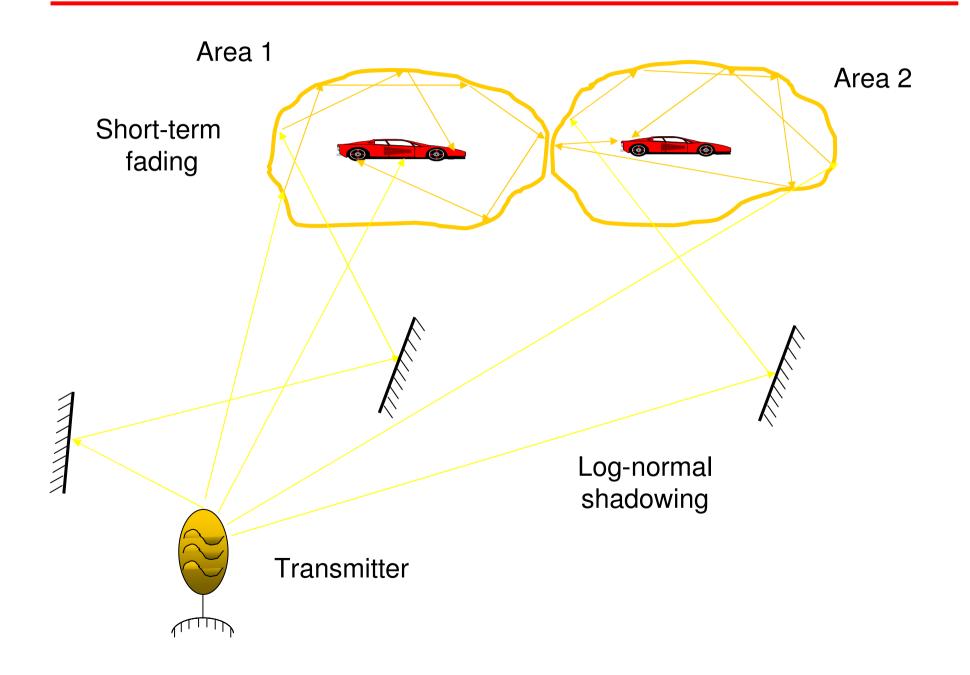
- OFDM and MC-CDMA: A Primer by Lajos Hanzo (Author), Thomas Keller (Author), ISBN-10: 0470030070
- Additional Readings:
- Richard van Nee and Ramjee Prasad, OFDM for Wireless Multimedia Communications, Artech House: 2000 (ISBN: OR90065306)
- Orthogonal Frequency Division Multiplexing for Wireless Communications by <u>Ye (Geoffrey) Li</u> (Editor), <u>Gordon L. Stuber</u> (Editor), ISBN 0387290958
- Ahmad Bahai and Burton Saltzberg, Multi-Carrier Digital Communications: Theory and Applications of OFDM, Plenum Publishing Corporation: 1999, ISBN: 0306462966.

•		Wireless channels characteristics (7.5%)]
	_	wireless channel modeling and characteristics	
		 Large scale and small scale models 	
		 Common channel models 	
		• Channel categories and parameter calculation.	
		• Prob. of error calculations	
•		OFDM Basics (10%)	1
	_	History of OFDM	
	_	OFDM System model	
	_	Discrete-time signals & systems and DFT	
	_	Generation of subcarriers using the IFFT	
	_	Guard time, cyclic extension	
	_	Windowing	
	_	Choice of OFDM parameters & OFDM signal processing	
	_	Implementation complexity of OFDM versus single carrier modulation	
•		Modulation and Coding (10%)	2
	_	Linear and nonlinear modulation	
	_	Interleaving and channel coding	
	_	Optimal bit and power allocation	
	_	Adaptive modulation	

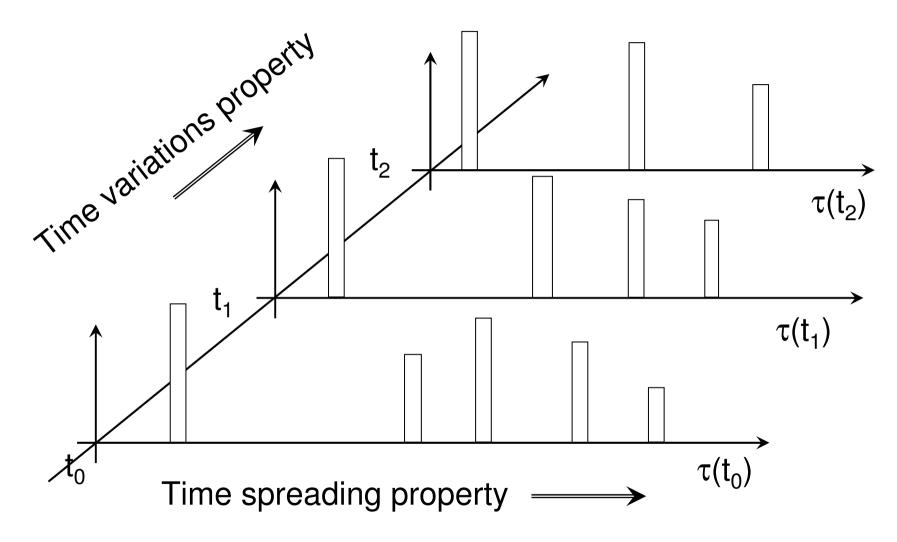
•		Analysis of OFDM systems (15%)	2
	_	RF subsystems, amplifier classification and distortion	
	_	Crest factor (PAPR) reduction techniques	
		Pre-distortion & adaptive pre-distortion techniques	
		 clipping 	
		 coding techniques 	
		 partial transmit sequences (PTS) & modified PTS v. selective mapping 	
		 nonlinear quantization (companding) 	
	_	Phase noise and I&Q imbalance for QAM	
	_	Performance of OFDM in Gaussian channels	
	_	Performance of OFDM in Wide-band channels	
•		Synchronization and Estimation (15%)	2
	_	ICI and OISI problems	
	_	Timing estimation	
	_	Frequency synchronization	
	_	Frequency error estimation algorithms	
	_	Carrier phase tracking	
	_	Frequency domain and time domain approaches for channel estimation	
		• coherent detection	
		differential detection	


•		Multi-user OFDM Techniques (10%)	2
	_	Adaptive modulations in OFDM	
	_	Power and bit allocations in OFDM	
	_	Scalable OFDM	
	_	Flash OFDM	
•		Diversity (7.5%)	1
	_	Limits of capacity in fading environments	
	_	Channel models for multiple-input-multiple-output (MIMO) system	
	_	Receiver diversity techniques	
	_	Transmit diversity techniques and design criteria for fading channels	
	_	Block, trellis and layered space-time codes	
•		Multi-carrier CDMA (10%)	1
	_	MC-CDMA versus DS-CDMA	
	_	MC-CDMA versus orthogonal frequency division multiple access (OF	FDMA]
	_	OFDMA and MC-CDMA performance evaluation in wide-band change	nels

•		Physical and Medium Access Control (MAC) for IEEE 802.11 Networks (7.5%)	1
	_	Physical modeling of 802.11 networks	
	_	MAC system architecture	
	_	Frame exchange with RTS/CTS	
	_	Power management	
	_	Synchronization	
•		Physical and Medium Access Control (MAC) for IEEE 802.16 Networks (7.5%)	1
	_	Physical modeling of 802.16 networks	
	_	MAC system architecture	
	_	QoS guarantees in Wimax	
	_	Power management	
	_	Synchronization	


Grading

Type of assignment	Percent of Grade	
Home works	20%	
Matlab Assignments	20%	
Midterm	20%	
Final project presentation and term paper	20%	
Final Exam	20%	


Fading channels

Large and Small Scale Propagation Models

Impulse Response Characterization

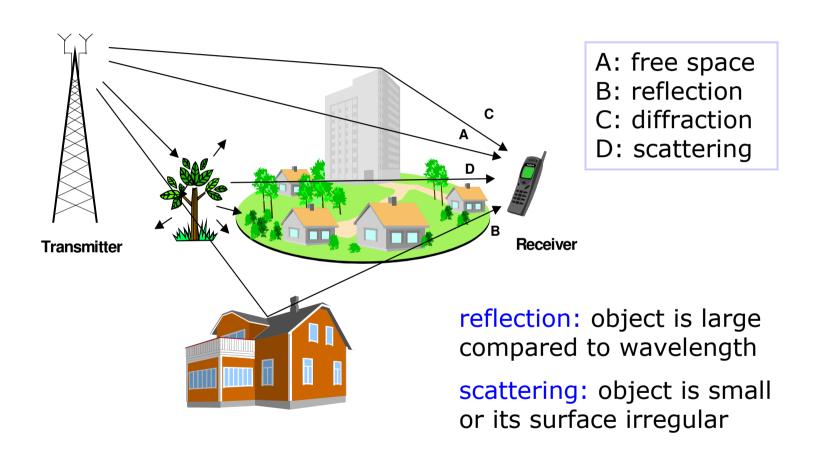
 Impulse response: Time-spreading: multipath and time-variations: time-varying environment

Low-pass equivalent (LPE) signal

RF carrier frequency

 $s(t) = \operatorname{Re}\left\{z(t)e^{j2\pi f_c t}\right\}$ $\uparrow \uparrow$

Real-valued RF signal

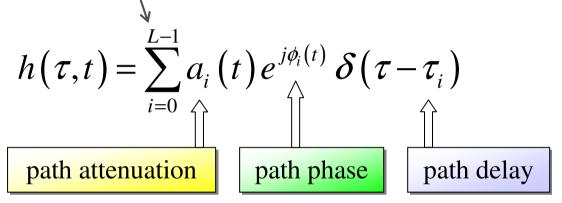

Complex-valued LPE signal

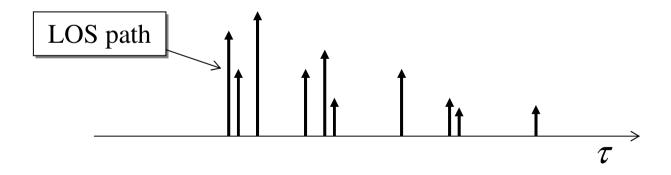
$$z(t) = x(t) + jy(t) = c(t)e^{j\phi(t)}$$

In-phase signal component

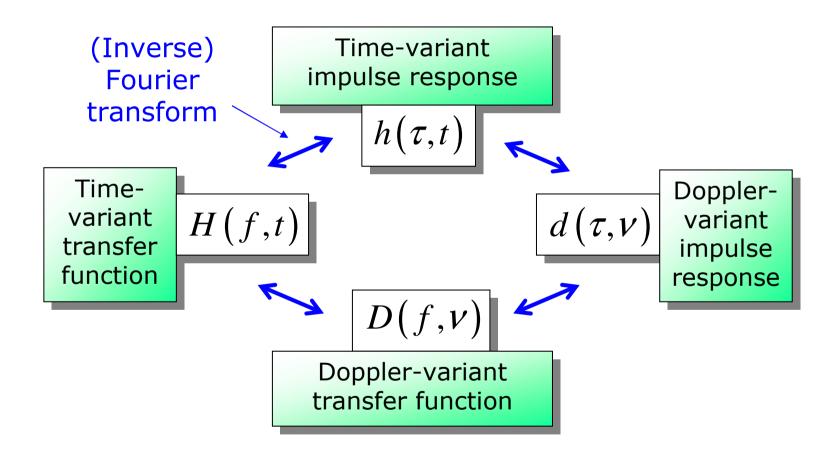
Quadrature component

Propagation mechanisms




Countermeasures: narrowband fading

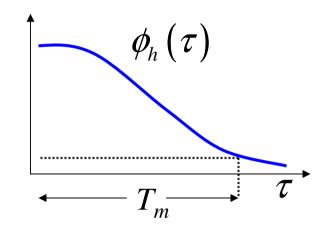
- Diversity (transmitting the same signal at different frequencies, at different times, or to/from different antennas)
 - will be investigated in later lectures
 - wideband channels => multipath diversity
- Interleaving (efficient when a fade affects many bits or symbols at a time), frequency hopping
- Forward Error Correction (FEC, uses large overhead)
- Automatic Repeat reQuest schemes (ARQ, cannot be used for transmission of real-time information)


CIR of a wideband fading channel

The CIR consists of L resolvable propagation paths

Deterministic channel functions

Stochastical (WSSUS) channel functions

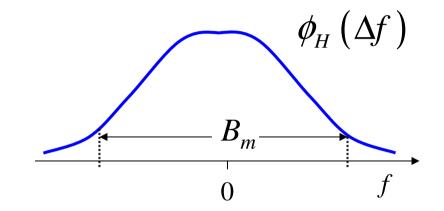


Stochastical (WSSUS) channel variables

Maximum delay spread: T_m

Maximum delay spread may be defined in several ways.

For this reason, the RMS delay spread is often used instead:



$$\sigma_{\tau} = \sqrt{\frac{\int \tau^{2} \phi_{h}(\tau) d\tau}{\int \phi_{h}(\tau) d\tau} - \left[\frac{\int \tau \phi_{h}(\tau) d\tau}{\int \phi_{h}(\tau) d\tau}\right]^{2}}$$

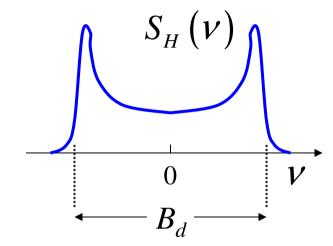
Stochastical (WSSUS) channel variables

Coherence bandwidth of channel:

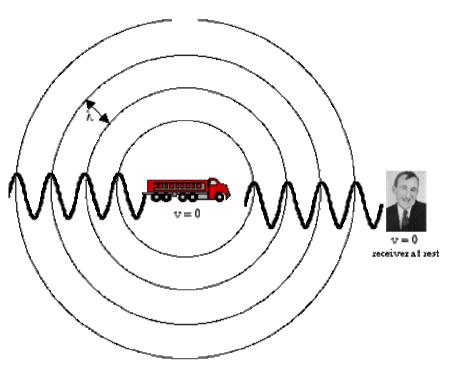
$$B_m \approx 1/T_m$$

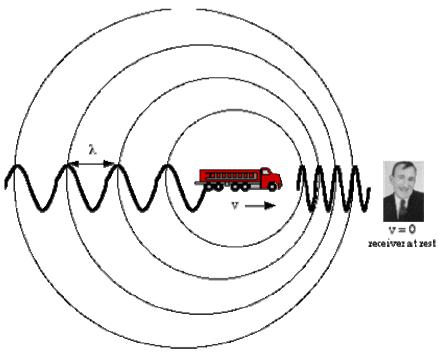
Implication of coherence bandwidth:

If two sinusoids (frequencies) are spaced much less apart than B_{m} , their fading performance is similar.


If the frequency separation is much larger than ${\cal B}_m$, their fading performance is different.

Stochastical (WSSUS) channel variables

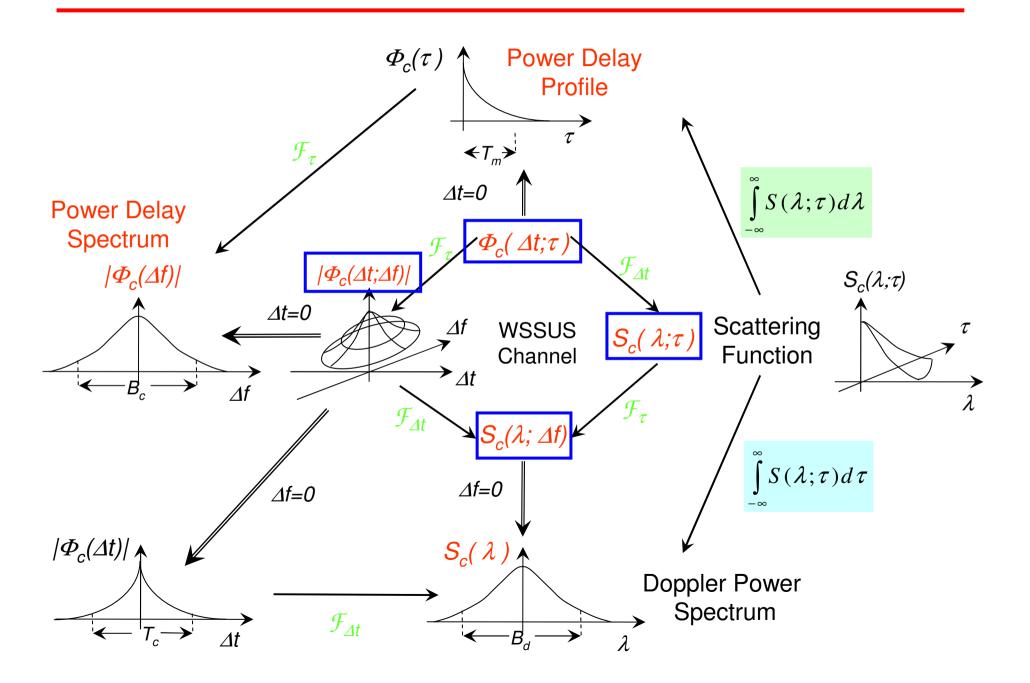

Maximum Doppler spread: B_d


The Doppler spectrum is often U-shaped (like in the figure on the right). The reason for this behaviour is the relationship

$$v = \frac{V}{\lambda} \cos \alpha = f_d \cos \alpha$$

Physical interpretation of Doppler shift

Delay - Doppler spread of channel


Channel Autocorrelation Functions

- Time-spreading: Multipath characteristics of channel
 - Multi-path delay spread, T_m
 - Characterizes time dispersiveness of the channel,
 - Obtained from power delay-profile, $\Phi_c(\tau)$
 - Indicates delay during which the power of the received signal is above a certain value.
 - Coherence bandwidth, B_c approx. $1/T_m$
 - Indicates frequencies over which the channel can be considered flat
 - ullet Two sinusoids separated by more than B_c : affected differently by the channel
 - Indicates frequency selectivity during transmission.

Channel Autocorrelation Functions

- Time variations of channel: Frequency-spreading
 - Doppler Spread, B_d
 - Characterizes frequency dispersiveness of the channel, or the spreading of transmitted frequency due to different Doppler shifts
 - Obtained from Doppler spectrum, $S_c(\lambda)$
 - Indicates range of frequencies over which the received Doppler spectrum is above a certain value
 - Coherence time, T_c approx. $1/B_d$
 - Time over which the channel is time-invariant
 - A large coherence time: Channel changes slowly

Channel Autocorrelation Functions

Statistical Models

• Design and performance analysis based on statistical ensemble of channels rather than specific physical channel.

$$h_{\ell}[m] \approx \sum_{i} a_{i} e^{-j2\pi f_{c}\tau_{i}}$$

• Rayleigh flat fading model: many small scattered paths

$$h[m] \sim \mathcal{N}(0, \frac{1}{2}) + j\mathcal{N}(0, \frac{1}{2}) \sim \mathcal{C}\mathcal{N}(0, 1)$$

Complex circular symmetric Gaussian.

Squared magnitude is exponentially distributed.

• Rician model: 1 line-of-sight plus scattered paths

$$h[m] \sim \sqrt{\kappa} + \mathcal{CN}(0,1)$$

Fading distributions (Rayleigh)

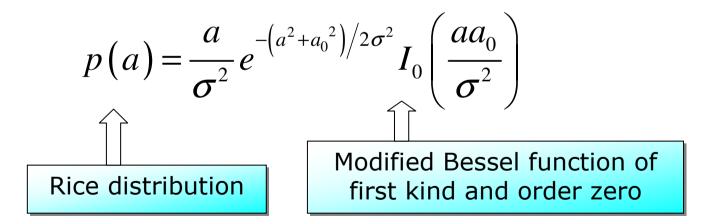
In a flat fading channel, the (time-variant) CIR reduces to a (time-variant) complex channel coefficient:

$$c(t) = a(t)e^{j\phi(t)} = x(t) + jy(t) = \sum_{i} a_{i}(t)e^{j\phi_{i}(t)}$$

When the quadrature components of the channel coefficient are independently and Gaussian distributed, we get:

$$p(a) = \frac{a}{\sigma^2} e^{-a^2/2\sigma^2}$$

$$p(\phi) = \frac{1}{2\pi}$$


$$\text{Rayleigh distribution}$$
Uniform distribution

Fading distributions (Rice)

In case there is a strong (e.g., LOS) multipath component in addition to the complex Gaussian component, we obtain:

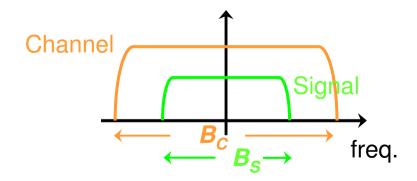
$$c(t) = a_0 + a(t)e^{j\phi(t)} = a_0 + \sum_i a_i(t)e^{j\phi_i(t)}$$

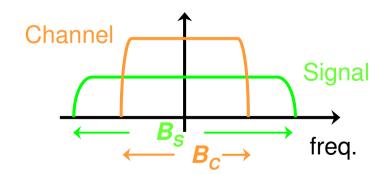
From the joint (magnitude and phase) pdf we can derive:

Types of Channels

Types of channel	Defining characteristic
Fast fading Slow fading Flat fading Frequency-selective fading Underspread	$T_{ m c}\ll$ delay requirement $T_{ m c}\gg$ delay requirement $W\ll W_{ m c}$ $W\gg W_{ m c}$ $T_{ m d}\ll T_{ m c}$

Channel Classification


Based on Time-Spreading

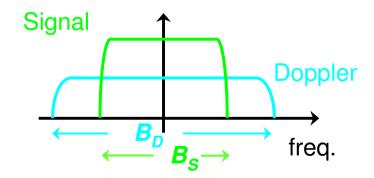

Flat Fading

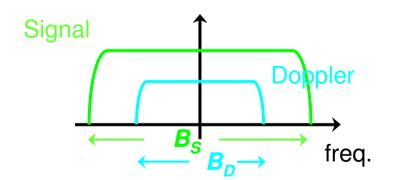
- 1. $B_S < B_C \Leftrightarrow T_m < T_s$
- 2. Rayleigh, Ricean distrib.
- 3. Spectral char. of transmitted signal preserved

Frequency Selective

- 1. $B_S > B_C \Leftrightarrow T_m > T_s$
- 2. Intersymbol Interference
- 3. Spectral chara. of transmitted signal not preserved
- 4. Multipath components resolved

Channel Classification


Based on Time-Variations


Fast Fading

- 1. High Doppler Spread
- 2. $1/B_d \cong T_C < T_s$

Slow Fading

- 1. Low Doppler Spread
- 2. $1/B_d \cong T_C > T_s$

Channel Classification

• Underspread channel: $T_m B_d << 1$ Channel characteristics vary slowly (B_d small) or paths obtained within a short interval of time (T_m small). Easy to extract channel parameters.

• Overspread channel: $T_m B_d >> 1$ Hard to extract parameters as channel characteristics vary fast and channel changes before all paths can be obtained.