## **COLLEGE OF ENGINEERING & TECHNOLOGY**



Department: Electronics & Communication EngineeringLecturer: Dr. Mohamed Essam KhedrGTA: Eng. Mohamed Essam TamazinCourse Title: Telecommunication Systems EngineeringCourse Code: EC 551

Course Code : EC 551

## **Sheet (4)**

## **Wireless Channel Characteristics**

1. If a particular modulation provides suitable BER performance whenever  $\sigma_{\tau} / T_s \leq 0.1$ , Determine the smallest symbol period  $T_s$  (and thus the greatest symbol rate) that may be sent through RF channels in the following Figure.



- 2. The local average power delay profile in a particular environment is found to be  $P(\tau) = \sum_{n=0}^{2} \frac{10^{-6}}{n^2 + 1} \delta(\tau n10^{-6})$ 
  - a. Sketch the power Delay profile of the channel in dBm.
  - b. What is the local average power in dBm?
  - c. What is the rms delay spread of the channel?
  - d. If 256 QAM modulation having a bit rate of 2 Megabits per second is applied to the channel, will the modulation undergo flat or frequency selective fading? Explain your answer.
  - e. Over what bandwidth will the channel appear to have constant gain?

3. A local spatial average of a power delay profile measured at 900 MHz is shown in the following Figure.



- a. Determine the rms delay spread and mean excess delay for the channel.
- b. Determine the maximum excess delay (20 dB).
- c. if the channel is to be used with a modulation that requires an equalizer whenever the symbol duration T is less than 10  $\sigma_{\tau}$ , determine the maximum RF symbol rate that can be supported without requiring an equalizer.
- d. If a mobile traveling at 30 km/hr recives a single through the channel. Determine the time over which the channel appears stationary (or at least highly correlated).