# EC 551 Telecommunication System Engineering

# Mohamed Khedr

http://webmail.aast.edu/~khedr

| Syllabus    | Week 1  | Overview                              |  |
|-------------|---------|---------------------------------------|--|
|             | Week 2  | Wireless Channel characteristics      |  |
| Tentatively | Week 3  | Large scale Wireless Channel          |  |
|             | Week 4  | Small scale Wireless Channel          |  |
|             | Week 5  | OFDM and modulation techniques        |  |
|             | Week 6  | Coding techniques in wireless systems |  |
|             | Week 7  | WiMax Physical Layer                  |  |
|             | Week 8  | WiMax MAC Layer                       |  |
|             | Week 9  | WLAN Physical/MAC Layer               |  |
|             | Week 10 | Cellular Communication Concept        |  |
|             | Week 11 | FDMA, TDMA, CDMA and Duplexing        |  |
|             | Week 12 | GSM System                            |  |
|             | Week 13 | GPRS System                           |  |
|             | Week 14 | UMTS                                  |  |
|             | Week 15 | VOIP                                  |  |





# **Radio propagation**

**Received Power**  $P_R$  in Free Space

 $P_{R} = P_{T} \cdot G_{R} G_{T} \left(\frac{\lambda}{4\pi \cdot d}\right)^{2}$ 

- $P_R$  Received power
- $P_T$  Transmitted power
- $G_R$  Receiver antenna gain
- $G_T$  Transmitter antenna gain
- $\lambda$  Wavelength
- *d* Distance between transmitter and receiver antennas

### Attenuation Due to *Distance*

 $A_d(t) \propto d(t)^{-a}$ 

a path loss exponent,  $a \in [2,5]$ 

d(t) distance

# **Shadowing** → X<sub>c</sub> Models attenuation from obstructions Random due to random # and type of obstructions Typically follows a log-normal distribution □ dB value of power is normally distributed

 $\square$  µ=0 (mean captured in path loss), 4< $\sigma^2$ <12 (empirical)



## Outage Probability and Cell Coverage Area

- □ Path loss: circular cells
- □ Path loss+shadowing: amoeba cells
  - □ Tradeoff between coverage and interference
- Outage probability
  - □ Probability received power below given minimum
- □ Cell coverage area
  - **u** # of cell locations at desired power
  - □ Increases as shadowing variance decreases
  - Large # indicates interference to other cells



# **Typical large-scale path loss**

#### Path Loss Exponents for Different Environments

| Environment                   | Path Loss Exponent, <i>n</i> |
|-------------------------------|------------------------------|
| Free space                    | 2                            |
| Urban area cellular radio     | 2.7 to 3.5                   |
| Shadowed urban cellular radio | 3 to 5                       |
| In building line-of-sight     | 1.6 to 1.8                   |
| Obstructed in building        | 4 to 6                       |
| Obstructed in factories       | 2 to 3                       |

| Environment                       | $\gamma$ range |
|-----------------------------------|----------------|
| Urban macrocells                  | 3.7-6.5        |
| Urban microcells                  | 2.7-3.5        |
| Office Building (same floor)      | 1.6-3.5        |
| Office Building (multiple floors) | 2-6            |
| Store                             | 1.8-2.2        |
| Factory                           | 1.6-3.3        |
| Home                              | 3              |

<u>Cell design impact</u>: If the radius of a cell is reduced by half when the propagation path loss exponent is 4, the transmit power level of a base station is reduced by 12dB (=10 log 16 dB).

Costs: More base stations, frequent handoffs





# Game plan

- □ We wish to understand how physical parameters such as
  - □ carrier frequency
  - □ mobile speed
  - $\square$  bandwidth
  - □ delay spread
  - □ angular spread

impact how a wireless channel behaves from the cell planning and communication system point of view.

We start with deterministic <u>physical</u> model and progress towards <u>statistical</u> models, which are more useful for design and performance evaluation.

## Large-scale Fading: Path Loss, Shadowing

## **Path Loss (Example 1): Carrier Frequency**

**Example 2.1:** Consider an indoor wireless LAN with  $f_c = 900$  MHz, cells of radius  $\frac{10m}{100}$  m, and nondirectional antennas. Under the free-space path loss model, what transmit power is required at the access point such that all terminals within the cell receive a minimum power of 10  $\mu$ W. How does this change if the system frequency is 5 GHz?

*Solution:* We must find the transmit power such that the terminals at the cell boundary receive the minimum required power. We obtain a formula for the required transmit power by inverting (2.7) to obtain:

$$P_t = P_r \left[ \frac{4\pi d}{\sqrt{G_l} \lambda} \right]^2.$$

Substituting in  $G_l = 1$  (nondirectional antennas),  $\lambda = c/f_c = .33$  m, d = 10 m, and  $P_r = 10\mu$ W yields  $P_t = 1.45$ W = 1.61 dBW (Recall that P Watts equals  $10 \log_{10}[P]$  dbW, dB relative to one Watt, and  $10 \log_{10}[P/.001]$  dBm, dB relative to one milliwatt). At 5 GHz only  $\lambda = .06$  changes, so  $P_t = 43.9$  KW = 16.42 dBW.

### □ Note: effect of frequency f: 900 Mhz vs 5 Ghz.

Either the receiver must have greater sensitivity or the sender must pour 44W of power, even for 10m cell radius!

## Path Loss (Example 2), Interference & Cell Sizing

**Example 3.1** Consider a user in the downlink of a cellular system, where the desired base station is at a distance of 500 meters, and there are numerous nearby interfering base stations transmitting at the same power level. If there are 3 interfering base stations at a distance of 1 km, 3 at a distance of 2 km, and 10 at a distance of 4 km, use the empirical path loss formula to find the signal-to-interference ratio (SIR, i.e. the noise is neglected) when  $\alpha = 3$ , and then when  $\alpha = 5$ .

- Desired signal power:  $P_{r,d} = P_t P_o d_o^3 (0.5)^{-3}$ ,
- Interference power:  $P_{r,I} = P_t P_o d_o^3 \left[ 3(1)^{-3} + 3(2)^{-3} + 10(4)^{-3} \right].$

□ SIR: 
$$SIR(\alpha = 3) = \frac{P_{r,d}}{P_{r,I}} = 28.25 = 14.5 dB,$$
  
 $SIR(\alpha = 5) = 99.3 = 20 dB,$ 

SIR is much better with higher path loss exponent (α = 5)!
Higher path loss, smaller cells => lower interference, higher SIR

# Path Loss: <u>Range</u> vs <u>Bandwidth</u> Tradeoff

- □ <u>1.</u> High frequency RF electronics have traditionally been harder to design and manufacture, and hence more expensive. [less so nowadays]
- **<u>2.</u>** Pathloss increases ~  $O(f_c^2)$ 
  - □ A signal at 3.5 GHz (one of WiMAX's candidate frequencies) will be received with about 20 times less power than at 800 MHz (a popular cellular frequency).
  - Effective path loss exponent also increases at higher frequencies, due to increased absorption and attenuation of high frequency signals
- **Tradeoff:** 
  - □ Bandwidth at higher carrier frequencies is <u>more plentiful</u> and <u>less expensive</u>.
  - Does *not* support large transmission ranges.
  - □ (also increases problems for mobility/Doppler effects etc)
- WIMAX Choice:
  - □ Pick any two out of three: *high data rate, high range, low cost.*

# **Empirical Models**

- Okumura model
  - Empirically based (site/freq specific)
  - Awkward (uses graphs)
- Hata model
  - Analytical approximation to Okumura model
- Cost 136 Model:
  - □ Extends Hata model to higher frequency (2 GHz)
- □ Walfish/Bertoni:
  - □ Cost 136 extension to include diffraction from rooftops

## Commonly used in cellular system simulations

### **Empirical Path Loss: Okamura, Hata, COST231**

- □ Empirical models include effects of path loss, shadowing and multipath.
  - Multipath effects are averaged over several wavelengths: local mean attenuation (LMA)
  - Empirical path loss for a given environment is the average of LMA at a distance d over all measurements
- Okamura: based upon Tokyo measurements. 1-100 km, 150-1500MHz, base station heights (30-100m), median attenuation over free-space-loss, 10-14dB standard deviation.

$$P_L(d) \ \mathbf{dB} = L(f_c, d) + A_{mu}(f_c, d) - G(h_t) - G(h_r) - G_{AREA}$$

**Hata**: closed form version of Okamura

 $P_{L,urban}(d) \ \mathrm{dB} = 69.55 + 26.16 \log_{10}(f_c) - 13.82 \log_{10}(h_t) - a(h_r) + (44.9 - 6.55 \log_{10}(h_t)) \log_{10}(d). \ (2.31)$ 

### • **COST 231:** Extensions to 2 GHz

 $P_{L,urban}(d)d\mathbf{B} = 46.3 + 33.9 \log_{10}(f_c) - 13.82 \log_{10}(h_t) - a(h_r) + (44.9 - 6.55 \log_{10}(h_t)) \log_{10}(d) + C_M, \quad (2.34)$ 



Antenna height correction factors:

$$\begin{aligned} G(h_{te}) &= 20 \log_{10}(h_{te}/200), & 30 \text{ m} < h_{te} < 1000 \text{ m} \\ G(h_{re}) &= 10 \log_{10}(h_{re}/3), & h_{re} < 3\text{m} \\ G(h_{re}) &= 20 \log_{10}(h_{re}/3), & 3 \text{ m} < h_{re} < 10 \text{ m} \end{aligned}$$

©Mohamed Khedr., 2008



### Hata Model 2/3

The path loss (in dB) for urban areas is given in the Hata model as

$$\begin{aligned} L_{50}(urban) &= 69.55 + 26.16 \log_{10} f_c - 13.82 \log_{10} h_{te} - a(h_{re}) \\ &+ (44.9 - 6.55 \log_{10} h_{te}) \log_{10} d \end{aligned}$$

For various environments we apply a correction factor for the mobile antenna height. For a small to medium size city

$$a(h_{re}) = (1.1\log_{10} f_c - 0.7)h_{re} - (1.56\log_{10} f_c - 0.8)$$

For a large city the correction factors take the form

$$\begin{aligned} a(h_{re}) &= 8.29 (\log_{10} 1.54 h_{re})^2 - 1.1, & f_c < 300 \text{ MHz} \\ a(h_{re}) &= 3.2 (\log_{10} 11.75 h_{re})^2 - 4.97, & f_c > 300 \text{ MHz} \end{aligned}$$



### Hata Model 3/3

For a suburban area the original expression is modified as

$$L_{50}(suburban) = L_{50}(urban) - 2\left[\log(f_c/28)\right]^2 - 5.4$$

Finally for open rural areas we have

$$L_{50}(suburban) = L_{50}(urban) - 4.78 \left[\log(f_c)\right]^2 + 18.33 \log_{10}(f_c) - 40.94$$

Note that the Hata model is a formula and does not have the path specific graphical corrections available in the Okumura model.

# **Indoor Models**

- 900 MHz: 10-20dB attenuation for 1floor, 6-10dB/floor for next few floors (and frequency dependent)
- Partition loss each time depending upton material (see table)
- Outdoor-to-indoor: building penetration loss (8-20 dB), decreases by 1.4dB/floor for higher floors. (reduced clutter)



| Partition Type           | Partition Loss in dB |
|--------------------------|----------------------|
| Cloth Partition          | 1.4                  |
| Double Plasterboard Wall | 3.4                  |
| Foil Insulation          | 3.9                  |
| Concrete wall            | 13                   |
| Aluminum Siding          | 20.4                 |
| All Metal                | 26                   |



## **Shadowing: Measured large-scale path loss**





# **Outage Probability w/ Shadowing** $p(P_r(d) \le P_{min}) = 1 - Q \left( \frac{P_{min} - (P_t + 10 \log_{10} K - 10\gamma \log_{10} (d/d_0))}{\sigma_{\psi_{dB}}} \right)$

#### Example 2.5:

Find the outage probability at 150 m for a channel based on the combined path loss and shadowing models of Examples 2.3 and 2.4, assuming a transmit power of  $P_t = 10$  dBm and minimum power requirement  $P_{min} = -110.5$  dBm.

Solution We have  $P_t = 10 \text{ mW} = 10 \text{ dBm}$ .

$$\begin{aligned} P_{out}(-110.5 \text{dBm}, 150m) &= p(P_r(150m) < -110.5 \text{dBm}) \\ &= 1 - Q\left(\frac{P_{min} - (P_t + 10 \log_{10} K - 10\gamma \log_{10}(d/d_0))}{\sigma_{\psi_{dB}}}\right). \\ &= 1 - Q\left(\frac{-110.5 - (10 - 31.54 - 37.1 \log_{10}[150])}{3.65}\right) \\ &= .0121. \end{aligned}$$

An outage probabilities of 1% is a typical target in wireless system designs.

□ Need to improve receiver sensitivity (i.e. reduce Pmin) for better coverage.

# EC 551 Telecommunication System Engineering Mohamed Khedr

http://webmail.aast.edu/~khedr

| Syllabus    | Week 1  | Overview                              |  |
|-------------|---------|---------------------------------------|--|
|             | Week 2  | Wireless Channel characteristics      |  |
| Tentatively | Week 3  | Large scale Wireless Channel          |  |
|             | Week 4  | Small scale Wireless Channel          |  |
|             | Week 5  | OFDM and modulation techniques        |  |
|             | Week 6  | Coding techniques in wireless systems |  |
|             | Week 7  | WiMax Physical Layer                  |  |
|             | Week 8  | WiMax MAC Layer                       |  |
|             | Week 9  | WLAN Physical/MAC Layer               |  |
|             | Week 10 | Cellular Communication Concept        |  |
|             | Week 11 | FDMA, TDMA, CDMA and Duplexing        |  |
|             | Week 12 | GSM System                            |  |
|             | Week 13 | GPRS System                           |  |
|             | Week 14 | UMTS                                  |  |
|             | Week 15 | VOIP                                  |  |

# **Shadowing: Modulation Design**

Consider a WiMAX base station (BS) communicating to a subscriber, with the channel parameters  $\alpha = 3$ ,  $P_o = -40dB$ ,  $d_0 = 1m$ ,  $\sigma_s = 6dB$ . We assume a transmit power of  $P_t = 1$  Watt (30 dBm), a bandwidth of B = 10 MHz and due to rate 1/2 convolutional codes, a received SNR of 14.7 dB is required for 16QAM, while just 3 dB is required for BPSK<sup>4</sup>. Finally, we consider only ambient noise with a typical power spectral density of  $N_o = -173dBm/Hz$ , with an additional receiver noise figure of  $N_f = 5dB^5$ .

The question is this: At a distance of 500 meters from the base station, what is the likelihood that the BS can reliably send BPSK or 16 QAM?

Simple path loss/shadowing model: 
$$P_r = P_t P_o \chi \left(\frac{d_o}{d}\right)^{\alpha}$$

□ Find Pr:  $P_r(dB) = 10 \log_{10} P_t + 10 \log_{10} P_o - 10 \log_{10} d^{\alpha} + 10 \log_{10} \chi$ =  $30dBm - 40dB - 81dB + \chi(dB) = -91dBm + \chi(dB)$ 

□ Find Noise power:

$$I_{tot}(dB) = N_o + N_f + 10 \log_{10} B$$
  
= -173 + 5dB + 70 = -98dBm

# **Shadowing: Modulation Design (Contd)**

SINR: 
$$\gamma = -91dBm + \chi(dB) + 98dBm = 7dB + \chi(dB).$$

□ <u>*Without*</u> shadowing ( $\chi = 0$ ), BPSK works 100%, 16QAM fails all the time. □ <u>*With*</u> shadowing ( $\sigma_s = 6$ dB):

### **<u>BPSK</u>**:

 $P[\gamma \ge 3dB] = P[\frac{\chi + 7}{\sigma} \ge \frac{3}{\sigma}]$  $= P[\frac{\chi}{6} \ge -\frac{4}{6}]$  $= Q(-\frac{4}{6}) = 0.75$ 

$$P[\gamma \ge 14.7dB] = P[\frac{\chi + 7}{\sigma} \ge \frac{14.7}{\sigma}]$$
$$= Q(\frac{7.7}{6}) = .007$$

- 75% of users can use BPSK modulation and hence get a PHY data rate of  $10 \text{ MHz} \cdot 1 \text{ bit/symbol} \cdot 1/2 = 5 \text{ Mbps}$
- Less than 1% of users can reliably use 16QAM (4 bits/symbol) for a more desirable data rate of 20 Mbps.
- □ Interestingly for BPSK, w/o shadowing, we had 100%; and 16QAM: 0%!

Small-Scale Fading: Rayleigh/Ricean Models, Multipath & Doppler

## **Small-scale Multipath fading: System Design**

- Wireless communication typically happens at very high carrier frequency. (eg. f<sub>c</sub> = 900 MHz or 1.9 GHz for cellular)
- Multipath fading due to constructive and destructive interference of the transmitted waves.
- Channel varies when mobile moves a distance of the order of the carrier wavelength. This is about 0.3 m for 900 Mhz cellular.
- For vehicular speeds, this translates to channel variation of the order of 100 Hz.
- *Primary driver* behind wireless communication system design.



### **Source #1:** Single-Tap Channel: Rayleigh Dist'n

- □ Path loss, shadowing => average signal power loss
  - □ Fading around this average.
  - □ Subtract out average => fading modeled as a zero-mean random process
- □ <u>Narrowband Fading</u> channel: Each symbol is long in time
  - The channel h(t) is assumed to be uncorrelated across symbols => single "tap" in time domain.
- □ Fading w/ many scatterers: Central Limit Theorem
  - □ In-phase (cosine) and quadrature (sine) components of the snapshot r(0), denoted as  $r_I(0)$  and  $r_O(0)$  are independent Gaussian random variables.
  - **D** Envelope Amplitude:  $|r| = \sqrt{r_I^2 + r_Q^2}$  is Rayleigh,
  - □ Received Power:  $|r|^2 = r_I^2 + r_Q^2$  is exponentially distributed.



# Eg: Power Delay Profile (WLAN/indoor)



**Figure 5.10** Example of an indoor power delay profile; rms delay spread, mean excess delay, maximum excess delay (10 dB), and threshold level are shown.

### **<u>Multipath</u>: Time-Dispersion => Frequency Selectivity**

- □ The impulse response of the channel is correlated in the time-domain (sum of "echoes")
  - □ Manifests as a power-delay profile.
- Equivalent to "selectivity" or "deep fades" in the frequency domain
- **Delay spread:**  $\tau \sim 50ns (indoor) 1 \mu s (outdoor/cellular).$
- □ <u>Coherence Bandwidth</u>: Bc = 500kHz (outdoor/cellular) 20MHz (indoor)
- □ <u>Implications</u>: High data rate: symbol smears onto the adjacent ones (ISI).





©Mohamed Khedr., 2008

### **<u>Doppler</u>: Dispersion (Frequency) => Time-Selectivity**

- □ The doppler power spectrum shows dispersion/flatness ~ doppler spread (100-200 Hz for vehicular speeds)
  - Equivalent to "selectivity" or "deep fades" in the time domain correlation envelope.
  - □ Each envelope point in time-domain is drawn from Rayleigh distribution. But because of Doppler, it is not IID, but correlated for a time period ~ Tc (correlation time).
- Doppler Spread: Ds ~ 100 Hz (vehicular speeds @ 1GHz)
- **Coherence Time**: Tc = 2.5-5ms.
- □ Implications: A deep fade on a tone can persist for 2.5-5 ms! Closed-loop estimation is valid only for 2.5-5 ms.



Figure 3.18: The shape of the Doppler power spectrum  $\rho_t(\Delta f)$  determines the correlation envelope of the channel in time (top).



- $\square$  <u>#1:</u> At each tap, channel gain |h| is a Rayleigh distributed *r.v.*. The random *process* is <u>not</u> IID.
- $\square \quad \frac{#2:}{fades in the frequency domain: "frequency-selectivity" caused by <u>multi-path fading</u>}$
- □ <u>#3:</u> Response completely vanish (deep fade) for certain values of t: "*Time-selectivity*" caused by <u>doppler effects</u> (frequency-domain dispersion/spreading)

# **Fading: Jargon**

- **Flat fading**: no multipath ISI effects.
  - □ Eg: narrowband, indoors

### □ **Frequency-selective fading:** multipath ISI effects.

- □ Eg: broadband, outdoor.
- □ **<u>Slow fading:</u>** no doppler effects.
  - □ Eg: indoor Wifi home networking
- **Fast Fading:** doppler effects, time-selective channel
  - □ Eg: cellular, vehicular

□ Broadband cellular + vehicular => Fast + frequency-selective



### **Multipath Fading Example**

#### Example 3.5:

Consider a wideband channel with multipath intensity profile

$$A_c(\tau) = \begin{cases} e^{-\tau/.00001} & 0 \le \tau \le 20 \ \mu \text{sec.} \\ 0 & \text{else} \end{cases}$$

Find the mean and rms delay spreads of the channel and find the maximum symbol rate such that a linearlymodulated signal transmitted through this channel does not experience ISI.

Solution: The average delay spread is

$$\mu_{T_m} = \frac{\int_0^{20*10^{-6}} \tau e^{-\tau/.00001} d\tau}{\int_0^{20*10^{-6}} e^{-\tau/.00001} d\tau} = 6.87 \ \mu \text{sec.}$$

The rms delay spread is

$$\sigma_{T_m} = \sqrt{\frac{\int_0^{20*10^{-6}} (\tau - \mu_{T_m})^2 e^{-\tau} d\tau}{\int_0^{20*10^{-6}} e^{-\tau} d\tau}} = 5.25 \ \mu \text{sec.}$$

We see in this example that the mean delay spread is roughly equal to its rms value. To avoid ISI we require linear modulation to have a symbol period  $T_s$  that is large relative to  $\sigma_{T_m}$ . Taking this to mean that  $T_s > 10\sigma_{T_m}$  yields a symbol period of  $T_s = 52.5 \,\mu$ sec or a symbol rate of  $R_s = 1/T_s = 19.04$  Kilosymbols per second. This is a highly constrained symbol rate for many wireless systems. Specifically, for binary modulations where the symbol rate equals the data rate (bits per second, or bps), high-quality voice requires on the order of 32 Kbps and high-speed data requires on the order of 10-100 Mbps.

# **Key Wireless Channel Parameters**

Table 3.1: Key wireless channel parameters

| Symbol             | Parameter                                                           |  |
|--------------------|---------------------------------------------------------------------|--|
| $\alpha$           | path loss exponent                                                  |  |
| $\sigma_s$         | Log normal shadowing standard deviation                             |  |
| $f_D$              | Doppler spread (maximum Doppler frequency), $f_D = \frac{v f_c}{c}$ |  |
| $T_c$              | Channel coherence time, $T_c \approx f_D^{-1}$                      |  |
| $\tau_{\rm max}$   | Channel delay spread (maximum)                                      |  |
| $\tau_{\rm RMS}$   | Channel delay spread (RMS)                                          |  |
| $B_c$              | Channel coherence bandwidth, $B_c \approx \tau^{-1}$                |  |
| $\theta_{\rm RMS}$ | Angular spread (RMS)                                                |  |

# **Small-Scale Fading Summary**



Figure 5.11 Types of small-scale fading.

# Fading: Design Impacts (Eg: Wimax)

|  |     | Table 3.3: Summary of Broadband Fading Parameters, with F |                                                |                                                     | ules of Thumb                                                           |
|--|-----|-----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|
|  |     | Quantity                                                  | If "Large"?                                    | .If "Small" ?                                       | . WiMAX Design Impact                                                   |
|  |     | Delay Spread, $\tau$                                      | If $\tau \gg T$ , then fre-                    | If $\tau \ll T$ , then fre-                         | The larger the delay spread rela-                                       |
|  | ••• |                                                           | quency selective                               | quency flat                                         | tive to the symbol time, the more                                       |
|  |     | Coherence Band-<br>width B                                | If $\frac{1}{B_c} \ll T$ , then frequency flat | If $\frac{1}{B_c} \gg T$ , then frequency selective | Provides a guideline to subcarrier<br>width $B \simeq B / 10$ and hence |
|  | ••• |                                                           | quency nat                                     | quency selective                                    | number of subcarriers needed in OFDM: $L > 10B/B$                       |
|  |     | Doppler spread,                                           | If $f_c v \gg c$ , then fast fad-              | If $f_c v \leq c$ , then slow                       | As $f_D/B_{\rm sc}$ becomes nonnegligi-                                 |
|  | ••• | $f_D = \frac{f_c v}{c}$                                   | ing                                            | fading                                              | ble, subcarrier orthogonality is                                        |
|  |     |                                                           |                                                |                                                     | compromised                                                             |
|  |     | Coherence Time,                                           | If $T_c \gg T$ , then slow                     | If $T_c \leq T$ , then fast fad-                    | $T_c$ small necessitates frequent                                       |
|  | ••• | $T_c$                                                     | fading                                         | ing                                                 | channel estimation and limits the                                       |
|  |     |                                                           |                                                |                                                     | OFDM symbol duration, but pro-                                          |
|  |     |                                                           |                                                |                                                     | vides greater time diversity.                                           |
|  | I   |                                                           |                                                |                                                     |                                                                         |

# **Summary** □ We have understood both qualitatively and quantitatively the concepts of path loss, shadowing, fading (multi-path, doppler), and some of their design impacts. □ We have understood how time and frequency selectivity of wireless channels depend on key physical parameters.

□ We have come up with linear, LTI and statistical channel models useful for analysis and design.