EC 551 Telecommunication System Engineering

Mohamed Khedr

http://webmail.aast.edu/~khedr

Radio propagation

Received Power P_R in Free Space

$$
P_R = P_T \cdot G_R G_T \left(\frac{\lambda}{4\pi \cdot d}\right)
$$

- P_R Received power
- P_T Transmitted power
- G_R Receiver antenna gain
- G_T Transmitter antenna gain
- λ Wavelength
- Distance between transmitter and receiver antennas d

Attenuation Due to Distance

 $A_d(t) \propto d(t)^{-a}$

- path loss exponent, $a \in [2,5]$ \boldsymbol{a}
- $d(t)$ distance

Shadowing \Box Models attenuation from obstructions \Box Random due to random # and type of obstructions \Box Typically follows ^a log-normal distribution \Box dB value of power is normally distributed \mathbf{X}_{c}

 $\Box \mu$ =0 (mean captured in path loss), 4< σ ²<12 (empirical)

Outage Probability and Cell Coverage Area

- **Path loss: circular cells**
- **□ Path loss+shadowing: amoeba cells**
	- **Tradeoff between coverage and interference**
- **Q** Outage probability
	- **Probability received power below given minimum**
- **Q** Cell coverage area
	- **□**# of cell locations at desired power
	- **Increases as shadowing variance decreases**
	- **□** Large # indicates interference to other cells

 \overline{P}_r

Typical large-scale path loss

Path Loss Exponents for Different Environments

Cell design impact: If the radius of ^a cell is reduced by half when the propagation path loss exponen^t is 4, the transmit power level of ^a base station is reduced by 12dB $(=10 \log 16 \text{ dB}).$

Costs: More base stations, frequent handoffs

Game plan

- We wish to understand how physical parameters such as
	- \Box carrier frequency
	- mobile speed
	- **□** bandwidth
	- \Box delay spread
	- \Box angular spread

impact how ^a wireless channel behaves from the cell planning and communication system point of view.

□ We start with deterministic physical model and progress towards <u>statistical</u> models, which are more useful for design and performance evaluation.

Large-scale Fading: Path Loss, Shadowing

Path Loss (Example 1): Carrier Frequency

10m antennas. Under the free-space path loss model, what transmit power is required at the access point such that all terminals within the cell receive a minimum power of 10μ W. How does this change if the system frequency is 5 GHz?

Solution: We must find the transmit power such that the terminals at the cell boundary receive the minimum required power. We obtain a formula for the required transmit power by inverting (2.7) to obtain:

$$
P_t = P_r \left[\frac{4\pi d}{\sqrt{G_l} \lambda} \right]^2.
$$

Substituting in $G_l = 1$ (nondirectional antennas), $\lambda = c/f_c = .33$ m, $d = 10$ m, and $P_r = 10 \mu W$ yields $P_t =$ $1.45W = 1.61$ dBW (Recall that P Watts equals $10 \log_{10}[P]$ dbW, dB relative to one Watt, and $10 \log_{10}[P/\,001]$ dBm, dB relative to one milliwatt). At 5 GHz only $\lambda = .06$ changes, so $P_t = 43.9$ KW = 16.42 dBW.

■ Note: effect of frequency f: 900 Mhz vs 5 Ghz.

 \Box Either the receiver must have greater sensitivity or the sender must pour 44W of power, even for 10m cell radius!

Path Loss (Example 2), Interference & Cell Sizing

Example 3.1 Consider a user in the downlink of a cellular system, where the desired base station is at a distance of 500 meters, and there are numerous nearby interfering base stations transmitting at the same power level. If there are 3 interfering base stations at a distance of 1 km, 3 at a distance of 2 km, and 10 at a distance of 4 km, use the empirical path loss formula to find the signal-to-interference ratio (SIR, i.e. the noise is neglected) when $\alpha = 3$, and then when $\alpha = 5$.

- $P_{r,d} = P_t P_o d_o^3 (0.5)^{-3},$ Desired signal power: \Box
- Interference power: \Box $P_{r,I} = P_t P_o d_o^3 [3(1)^{-3} + 3(2)^{-3} + 10(4)^{-3}].$

■ SIR:
$$
SIR(\alpha = 3) = \frac{P_{r,d}}{P_{r,I}} = 28.25 = 14.5dB,
$$

\n $SIR(\alpha = 5) = 99.3 = 20dB,$

 \Box SIR is much better with higher path loss exponent ($\alpha = 5$)! \Box Higher path loss, smaller cells => lower interference, higher SIR

Path Loss: *Range* **vs** *Bandwidth* **Tradeoff**

- \Box **1.** High frequency RF electronics have traditionally been harder to design and manufacture, and hence more expensive. [less so nowadays]
- \Box **2.** Pathloss increases $\sim O(f_c^2)$
	- **□** A signal at 3.5 GHz (one of WiMAX's candidate frequencies) will be received with about <u>20 times less power than at 800 MHz</u> (a popular cellular frequency).
	- \Box Effective path loss exponent also increases at higher frequencies, due to increased absorption and attenuation of high frequency signals
- \Box Tradeoff:
	- **Bandwidth at higher carrier frequencies is <u>more plentiful</u> and <u>less expensive</u>.**
	- **D** Does *not* support large transmission ranges.
	- \Box (also increases problems for mobility/Doppler effects etc)
- \Box WIMAX Choice:
	- Pick any two out of three: *high data rate, high range, low cost*.

Empirical Models

- \Box Okumura model
	- **□** Empirically based (site/freq specific)
	- Awkward (uses graphs)
- \Box Hata model
	- **□** Analytical approximation to Okumura model
- \Box Cost 136 Model:
	- **□** Extends Hata model to higher frequency (2 GHz)
- \Box Walfish/Bertoni:
	- **□ Cost 136 extension to include diffraction from rooftops**

Commonly used in cellular system simulations

Empirical Path Loss: Okamura, Hata, COST231

- \Box Empirical models include effects of path loss, shadowing and multipath.
	- **□** Multipath effects are averaged over several wavelengths: local mean attenuation (LMA)
	- \Box Empirical path loss for ^a given environment is the average of LMA at ^a distance d over all measurements
- \Box **Okamura**: based upon Tokyo measurements. 1-100 km, 150-1500MHz, base station heights (30-100m), median attenuation over free-space-loss, 10- 14dB standard deviation.

$$
P_L(d) d\mathbf{B} = L(f_c, d) + A_{mu}(f_c, d) - G(h_t) - G(h_r) - G_{AREA}
$$

\Box **Hata**: closed form version of Okamura

 $P_{L,urban}(d)$ dB = 69.55 + 26.16 $\log_{10}(f_c)$ - 13.82 $\log_{10}(h_t)$ - $a(h_r)$ + (44.9 - 6.55 $\log_{10}(h_t)$) $\log_{10}(d)$. (2.31)

\Box **COST 231:** Extensions to 2 GHz

 $P_{L,urban}(d) \text{dB} = 46.3 + 33.9 \log_{10}(f_c) - 13.82 \log_{10}(h_t) - a(h_r) + (44.9 - 6.55 \log_{10}(h_t)) \log_{10}(d) + C_M, (2.34)$

Antenna height correction factors:

$$
G(h_{te}) = 20\log_{10}(h_{te}/200), \qquad 30 \text{ m} < h_{te} < 1000 \text{ m}
$$
\n
$$
G(h_{re}) = 10\log_{10}(h_{re}/3), \qquad h_{re} < 3\text{ m}
$$
\n
$$
G(h_{re}) = 20\log_{10}(h_{re}/3), \qquad 3 \text{ m} < h_{re} < 10 \text{ m}
$$

©Mohamed Khedr., 2008

Hata Model 2/3

The path loss (in dB) for urban areas is given in the Hata model as

$$
L_{50}(urban) = 69.55 + 26.16 \log_{10} f_c - 13.82 \log_{10} h_{te} - a(h_{re})
$$

+ $(44.9 - 6.55 \log_{10} h_{te}) \log_{10} d$

For various environments we apply a correction factor for the mobile antenna height. For a small to medium size city

$$
a(h_{re}) = (1.1 \log_{10} f_c - 0.7)h_{re} - (1.56 \log_{10} f_c - 0.8)
$$

For a large city the correction factors take the form

$$
a(h_{re}) = 8.29(\log_{10} 1.54 h_{re})^2 - 1.1, \qquad f_c < 300 \text{ MHz}
$$

$$
a(h_{re}) = 3.2(\log_{10} 11.75 h_{re})^2 - 4.97, \qquad f_c > 300 \text{ MHz}
$$

Hata Model 3/3

For a suburban area the original expression is modified as

$$
L_{50}(suburban) = L_{50}(urban) - 2 \left[\log(f_c/28) \right]^2 - 5.4
$$

Finally for open rural areas we have

$$
L_{50}(suburban) = L_{50}(urban) - 4.78 \left[\log(f_c) \right]^2 + 18.33 \log_{10}(f_c) - 40.94
$$

Note that the Hata model is a formula and does not have the path specific graphical corrections available in the Okumura model.

Indoor Models

- \Box 900 MHz: 10-20dB attenuation for 1 floor, 6-10dB/floor for next few floors (and frequency dependent)
- **Q** Partition loss each time depending upton material (see table)
- **□** Outdoor-to-indoor: building penetration loss (8-20 dB), decreases by 1.4dB/floor for higher floors. (reduced clutter)

Shadowing: Measured large-scale path loss

cities in Germany. For this data, $n = 2.7$ and $\sigma = 11.8$ dB [from [Sei91] © IEEE].

Outage Probability w/ Shadowing

$$
p(P_r(d) \le P_{min}) = 1 - Q\left(\frac{P_{min} - (P_t + 10\log_{10} K - 10\gamma \log_{10}(d/d_0))}{\sigma_{\psi_{dB}}}\right),
$$

Example 2.5:

Find the outage probability at 150 m for a channel based on the combined path loss and shadowing models of Examples 2.3 and 2.4, assuming a transmit power of $P_t = 10$ dBm and minimum power requirement $P_{min} = -110.5$ dBm.

Solution We have $P_t = 10$ mW = 10 dBm.

$$
P_{out}(-110.5\text{dBm}, 150m) = p(P_r(150m) < -110.5\text{dBm})
$$

= $1 - Q\left(\frac{P_{min} - (P_t + 10 \log_{10} K - 10\gamma \log_{10}(d/d_0))}{\sigma_{\psi_{dB}}}\right)$.
= $1 - Q\left(\frac{-110.5 - (10 - 31.54 - 37.1 \log_{10}[150])}{3.65}\right)$
= .0121.

An outage probabilities of 1% is a typical target in wireless system designs.

 \Box Need to improve receiver sensitivity (i.e. reduce Pmin) for better coverage.

EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr

Shadowing: Modulation Design

Consider a WiMAX base station (BS) communicating to a subscriber, with the channel parameters $\alpha =$ 3, $P_0 = -40$ dB, $d_0 = 1$ m, $\sigma_s = 6$ dB. We assume a transmit power of $P_t = 1$ Watt (30 dBm), a bandwidth of $B = 10$ MHz and due to rate $1/2$ convolutional codes, a received SNR of 14.7 dB is required for 16OAM, while just 3 dB is required for $BPSK⁴$. Finally, we consider only ambient noise with a typical power spectral density of $N_o = -173$ dBm/Hz, with an additional receiver noise figure of $N_f = 5$ dB⁵.

The question is this: At a distance of 500 meters from the base station, what is the likelihood that the BS can reliably send BPSK or 16 QAM?

■ Simple path loss/shadowing model:
$$
P_r = P_t P_o \chi \left(\frac{d_o}{d}\right)^{\alpha}
$$

 $P_r(dB) = 10 \log_{10} P_t + 10 \log_{10} P_o - 10 \log_{10} d^{\alpha} + 10 \log_{10} \chi$ Find Pr: \Box $= 30dBm - 40dB - 81dB + \chi(dB) = -91dBm + \chi(dB)$

 \Box Find Noise power:

$$
I_{tot}(dB) = N_o + N_f + 10 \log_{10} B
$$

= -173 + 5dB + 70 = -98dBm

©Mohamed Khedr., 2008

Shadowing: Modulation Design (Contd)

 SINR: $\gamma = -91dBm + \chi(dB) + 98dBm = 7dB + \chi(dB).$ \Box

 \Box *<u>Without</u>* shadowing $(\chi = 0)$, BPSK works 100%, 16QAM fails all the time. \Box *<u>With</u>* shadowing (σ_s = 6dB):

BPSK: **16**

 $P[\gamma \geq 3dB] = P[\frac{\chi + 7}{\sigma} \geq \frac{3}{\sigma}]$ $= P[\frac{\chi}{6} \ge -\frac{4}{6}]$ $= Q(-\frac{4}{6}) = 0.75$

QAM

$$
P[\gamma \ge 14.7dB] = P[\frac{\chi + 7}{\sigma} \ge \frac{14.7}{\sigma}]
$$

= $Q(\frac{7.7}{6}) = .007$

- \Box 75% of users can use BPSK modulation and hence ge^t ^a PHY data rate of 10 MHz · 1 bit/symbol ·1/2 ⁼ 5 Mbps
- \Box Less than 1% of users can reliably use 16QAM (4 bits/symbol) for a more desirable data rate of 20 Mbps.
- \Box Interestingly for BPSK, w/o shadowing, we had 100%; and 16QAM: 0%!

Small-Scale Fading: Rayleigh/Ricean Models, Multipath & Doppler

Small-scale Multipath fading: System Design

- \Box Wireless communication typically happens at very high carrier frequency. (eg. f_c = 900 MHz or 1.9 GHz for cellular)
- \Box Multipath fading due to constructive and destructive interference of the transmitted waves.
- \Box Channel varies when mobile moves ^a distance of the order of the carrier wavelength. This is about 0.3 ^m for 900 Mhz cellular.
- \Box For vehicular speeds, this translates to channel variation of the order of 100 Hz.
- \Box *Primary driver* behind wireless communication system design.

Source #1: Single-Tap Channel: Rayleigh Dist'n

- \Box Path loss, shadowing => average signal power loss
	- \Box Fading around this average.
	- \Box Subtract out average \Rightarrow fading modeled as a zero-mean random process
- \Box Narrowband Fading channel: Each symbol is long in time
	- \Box The channel h(t) is assumed to be uncorrelated across symbols \Rightarrow single "tap" in time domain.
- \Box Fading w/ many scatterers: Central Limit Theorem
	- \Box In-phase (cosine) and quadrature (sine) components of the snapshot r(0), denoted as $r_{\rm I}$ (0) and $r_{\rm Q}$ (0) are independent Gaussian random variables.
	- **E**nvelope Amplitude:
	- **Received Power:**

Eg: Power Delay Profile (WLAN/indoor)

Figure 5.10 Example of an indoor power delay profile; rms delay spread, mean excess delay, maximum excess delay (10 dB), and threshold level are shown.

Multipath: Time-Dispersion => Frequency Selectivity

- \Box The impulse response of the channel is correlated in the time-domain (sum of "echoes")
	- **D** Manifests as a power-delay profile.
- \Box Equivalent to "selectivity" or "deep fades" in the frequency domain
- \Box **Delay spread:** ^τ [~] *50ns (indoor) – 1*µ*^s (outdoor/cellular).*
- \Box **Coherence Bandwidth**: Bc ⁼ *500kHz (outdoor/cellular) – 20MHz (indoor)*
- \Box Implications: High data rate: symbol smears onto the adjacent ones (ISI).

©Mohamed Khedr., 2008

Doppler: Dispersion (Frequency) => Time-Selectivity

- \Box The doppler power spectrum shows dispersion/flatness \sim doppler spread (100-200 Hz for vehicular speeds)
	- **□** Equivalent to "selectivity" or "deep fades" in the time domain correlation envelope.
	- \Box Each envelope point in time-domain is drawn from Rayleigh distribution. But because of Doppler, it is not IID, but correlated for a time period $\sim Tc$ (correlation time).
- \Box **Doppler Spread:** Ds [~] 100 Hz (vehicular speeds @ 1GHz)
- \Box **Coherence Time**: Tc ⁼ 2.5-5ms.
- \Box Implications: A deep fade on ^a tone can persist for 2.5-5 ms! Closed-loop estimation is valid only for $2.5-5$ ms.

Figure 3.18: The shape of the Doppler power spectrum $\rho_t(\Delta f)$ determines the correlation envelope of the channel in time (top).

- \Box **#2:** Response spreads out in the time-domain (τ), leading to inter-symbol interference and deep fades in the frequency domain: "*frequency-selectivity*" caused by multi-path fading
- \Box **#3:** Response completely vanish (deep fade) for certain values of t: "*Time-selectivity*" caused by doppler effects (frequency-domain dispersion/spreading)

Fading: Jargon

- \Box **Flat fading**: no multipath ISI effects.
	- **□** Eg: narrowband, indoors

<u>Frequency-selective fading:</u> multipath ISI effects.

- **□** Eg: broadband, outdoor.
- \Box **Slow fading:** no doppler effects.
	- **Eg:** indoor Wifi home networking
- \Box **Fast Fading:** doppler effects, time-selective channel
	- **□** Eg: cellular, vehicular

 \Box Broadband cellular $+$ vehicular \Rightarrow Fast $+$ frequency-selective

Multipath Fading Example

Example 3.5:

Consider a wideband channel with multipath intensity profile

$$
A_c(\tau) = \begin{cases} e^{-\tau/.00001} & 0 \le \tau \le 20 \text{ } \mu \text{sec.} \\ 0 & \text{else} \end{cases}
$$

Find the mean and rms delay spreads of the channel and find the maximum symbol rate such that a linearlymodulated signal transmitted through this channel does not experience ISI.

Solution: The average delay spread is

$$
\mu_{T_m} = \frac{\int_0^{20*10^{-6}} \tau e^{-\tau/0.00001} d\tau}{\int_0^{20*10^{-6}} e^{-\tau/0.00001} d\tau} = 6.87 \text{ } \mu \text{sec.}
$$

The rms delay spread is

$$
\sigma_{T_m} = \sqrt{\frac{\int_0^{20*10^{-6}} (\tau - \mu_{T_m})^2 e^{-\tau} d\tau}{\int_0^{20*10^{-6}} e^{-\tau} d\tau}} = 5.25 \text{ } \mu \text{sec}.
$$

We see in this example that the mean delay spread is roughly equal to its rms value. To avoid ISI we require linear modulation to have a symbol period T_s that is large relative to σ_{T_m} . Taking this to mean that $T_s > 10\sigma_{T_m}$ yields a symbol period of $T_s = 52.5 \,\mu$ sec or a symbol rate of $R_s = 1/T_s = 19.04$ Kilosymbols per second. This is a highly constrained symbol rate for many wireless systems. Specifically, for binary modulations where the symbol rate equals the data rate (bits per second, or bps), high-quality voice requires on the order of 32 Kbps and high-speed data requires on the order of 10-100 Mbps.

Key Wireless Channel Parameters

Table 3.1: Key wireless channel parameters

Small-Scale Fading Summary

Figure 5.11 Types of small-scale fading.

Fading: Design Impacts (Eg: Wimax)

Summary □ We have understood both qualitatively and

- quantitatively the concepts of path loss, shadowing, fading (multi-path, doppler), and some of their design impacts.
- **□ We have understood how time and frequency** selectivity of wireless channels depend on key physical parameters.
- We have come up with linear, LTI and statistical channel models useful for analysis and design.