EC 551 Telecommunication System Engineering

Mohamed Khedr

http://webmail.aast.edu/~khedr

Multipath: Time-Dispersion => Frequency Selectivity

- \Box The impulse response of the channel is correlated in the time-domain (sum of "echoes")
	- **D** Manifests as a power-delay profile.
- \Box Equivalent to "selectivity" or "deep fades" in the frequency domain
- \Box **Delay spread:** ^τ [~] *50ns (indoor) – 1*µ*^s (outdoor/cellular).*
- \Box **Coherence Bandwidth**: Bc ⁼ *500kHz (outdoor/cellular) – 20MHz (indoor)*
- \Box Implications: High data rate: symbol smears onto the adjacent ones (ISI).

Doppler: Dispersion (Frequency) => Time-Selectivity

- \Box The doppler power spectrum shows dispersion/flatness \sim doppler spread (100-200 Hz for vehicular speeds)
	- **□** Equivalent to "selectivity" or "deep fades" in the time domain correlation envelope.
	- \Box Each envelope point in time-domain is drawn from Rayleigh distribution. But because of Doppler, it is not IID, but correlated for a time period $\sim Tc$ (correlation time).
- \Box **Doppler Spread:** Ds [~] 100 Hz (vehicular speeds @ 1GHz)
- \Box **Coherence Time**: Tc ⁼ 2.5-5ms.
- \Box Implications: A deep fade on ^a tone can persist for 2.5-5 ms! Closed-loop estimation is valid only for $2.5-5$ ms.

Figure 3.18: The shape of the Doppler power spectrum $\rho_t(\Delta f)$ determines the correlation envelope of the channel in time (top).

- \Box **#2:** Response spreads out in the time-domain (τ), leading to inter-symbol interference and deep fades in the frequency domain: "*frequency-selectivity*" caused by multi-path fading
- \Box **#3:** Response completely vanish (deep fade) for certain values of t: "*Time-selectivity*" caused by doppler effects (frequency-domain dispersion/spreading)

Fading: Jargon

- \Box **Flat fading**: no multipath ISI effects.
	- **□** Eg: narrowband, indoors

<u>Frequency-selective fading:</u> multipath ISI effects.

- **□** Eg: broadband, outdoor.
- \Box **Slow fading:** no doppler effects.
	- **Eg:** indoor Wifi home networking
- \Box **Fast Fading:** doppler effects, time-selective channel
	- **□** Eg: cellular, vehicular

 \Box Broadband cellular $+$ vehicular \Rightarrow Fast $+$ frequency-selective

Multipath Fading Example

Example 3.5:

Consider a wideband channel with multipath intensity profile

$$
A_c(\tau) = \begin{cases} e^{-\tau/.00001} & 0 \le \tau \le 20 \text{ } \mu \text{sec.} \\ 0 & \text{else} \end{cases}
$$

Find the mean and rms delay spreads of the channel and find the maximum symbol rate such that a linearlymodulated signal transmitted through this channel does not experience ISI.

Solution: The average delay spread is
\n
$$
\mu_{T_m} = \frac{\int_0^{20*10^{-6}} \tau e^{-\tau/0.0001} d\tau}{\int_0^{20*10^{-6}} e^{-\tau/0.0001} d\tau} = 6.87 \text{ }\mu \text{sec.}
$$
\nThe rms delay spread is
\n
$$
\sigma_{T_m} = \sqrt{\frac{\int_0^{20*10^{-6}} (\tau - \mu_{T_m})^2 e^{-\tau} d\tau}{\int_0^{20*10^{-6}} (\tau - \mu_{T_m})^2 e^{-\tau} d\tau}} = 5.25 \text{ }\mu \text{sec.}
$$

We see in this example that the mean delay spread is roughly equal to its rms value. To avoid ISI we require linear modulation to have a symbol period T_s that is large relative to σ_{T_m} . Taking this to mean that $T_s > 10\sigma_{T_m}$ yields a symbol period of $T_s = 52.5 \,\mu$ sec or a symbol rate of $R_s = 1/T_s = 19.04$ Kilosymbols per second. This is a highly constrained symbol rate for many wireless systems. Specifically, for binary modulations where the symbol rate equals the data rate (bits per second, or bps), high-quality voice requires on the order of 32 Kbps and high-speed data requires on the order of 10-100 Mbps.

Key Wireless Channel Parameters

Table 3.1: Key wireless channel parameters

Fading: Design Impacts (Eg: Wimax)

Orthogonal Frequency Division Multiplexing

Motivation

• High bit-rate wireless applications in ^a multipath radio environment.

- OFDM can enable such applications without a high complexity receiver.
- OFDM is par^t of WLAN, DVB, and BWA standards and is ^a strong candidate for some of the 4G wireless technologies.

What is OFDM?

- Modulation technique
	- **Requires channel coding**
	- Solves multipath problems

Multipath Propagation

 \Box Reflections from walls, etc.

 \Box Time dispersive channel **Impulse response:**

- \Box Problem with high rate data transmission:
	- **□** inter-symbol-interference

A Solution for ISI channels

• Conversion of ^a high-data rate stream into several low-rate

streams.

- Parallel streams are modulated onto orthogonal carriers.
- Data symbols modulated on these carriers can be recovered without mutual interference.

• Overlap of the modulated carriers in the frequency domain - different from FDM.

OFDM

- OFDM is ^a multicarrier block transmission system.
- Block of 'N' symbols are grouped and sent parallely.
- No interference among the data symbols sent in ^a block.

Spectrum of the modulated data symbols

- \Box Rectangular Window of duration $T_{\rm 0}$
- \Box Has ^a sinc-spectrum with zeros at 1/ T_{0}
- \Box Other carriers are pu^t in these zeros
- $\Box \rightarrow$ sub-carriers are orthogonal

N sub-carriers:

OFDM terminology

- •Orthogonal carriers referred to as subcarriers $\{f_i, i=0,...N-1\}$.
- •• OFDM symbol period $\{T_{os} = N \times T_s\}.$
- •Subcarrier spacing $\Delta f = 1/T_{\text{os}}$.

OFDM and FFT

- Samples of the multicarrier signal can be obtained using the IFFT of the data symbols - ^a key issue.
- FFT can be used at the receiver to obtain the data symbols.
- No need for 'N' oscillators, filters etc.
- Popularity of OFDM is due to the use of IFFT/FFT which have efficient implementations.

Interpretation of IFFT&FFT

- **IFFT** at the transmitter $\&$ FFT at the receiver
- **□** Data symbols modulate the spectrum and the time domain symbols are obtained using the IFFT.
- \Box Time domain symbols are then sent on the channel.
- **EXTE FFT** at the receiver to obtain the data.

Cyclic Prefix

- Zeros used in the guard time can alleviate interference between OFDM symbols (IOSI problem).
- Orthogonality of carriers is lost when multipath channels are involved.
- Cyclic prefix can restore the orthogonality.

Cyclic Prefix Illustration

©Mohamed Khedr., 2008

Advantages of OFDM

□ Solves the multipath-propagation problem Simple equalization at receiver **Q** Computationally efficient **O** For broadband systems more efficient than SC **□** Supports several multiple access schemes **□ TDMA, FDMA, MC-CDMA, etc. □** Supports various modulation schemes ■ Adaptability to SNR of sub-carriers is possible

Problems of OFDM (Research Topics)

Synchronization

- Timing and frequency offset can influence performance.
- Frequency offset can influence orthogonality of subcarriers.
- Loss of orthogonality leads to Inter Carrier Interference.

Peak to Average Ratio

- Multicarrier signals have high PAR as compared to single carrier systems.
- PAR increases with the number of subcarriers.
- Affects power amplifier design and usage.

OFDM for Communication Systems

For a given OFDM system find a suitable multiple access scheme that maps the user data to a modulation block!

©Mohamed Khedr., 2008