EC 551 Telecommunication System Engineering

Mohamed Khedr

http://webmail.aast.edu/~khedr

Syllabus

Tentatively

Week 1	Overview		
Week 2	Wireless Channel characteristics		
Week 3	OFDM and modulation techniques		
Week 4	Coding techniques in wireless systems		
Week 5	WiMax Physical Layer		
Week 6	WiMax MAC Layer		
Week 7	WLAN Physical Layer		
Week 8	WLAN MAC Layer		
Week 9	Cellular Communication Concept		
Week 10	FDMA, TDMA, CDMA and Duplexing		
Week 11	GSM System		
Week 12	GPRS System		
Week 13	UMTS		
Week 14	IP networks		
Week 15	VOIP		

Multipath: Time-Dispersion => Frequency Selectivity

- □ The impulse response of the channel is correlated in the time-domain (sum of "echoes")
 - Manifests as a power-delay profile.
- Equivalent to "selectivity" or "deep fades" in the frequency domain
- Delay spread: $\tau \sim 50$ ns (indoor) 1μs (outdoor/cellular).
- **Coherence Bandwidth**: Bc = 500kHz (outdoor/cellular) 20MHz (indoor)
- □ <u>Implications</u>: High data rate: symbol smears onto the adjacent ones (ISI).

the shape of the multipath intensity profile $A_{\tau}(\Delta \tau)$ determines the

correlation pattern of the channel frequency response (bottom)

<u>Doppler</u>: Dispersion (Frequency) => Time-Selectivity

- The doppler power spectrum shows dispersion/flatness ~ doppler spread (100-200 Hz for vehicular speeds)
 - Equivalent to "selectivity" or "deep fades" in the time domain correlation envelope.
 - □ Each envelope point in time-domain is drawn from Rayleigh distribution. But because of Doppler, it is not IID, but correlated for a time period ~ Tc (correlation time).
- **Doppler Spread:** Ds ~ 100 Hz (vehicular speeds @ 1GHz)
- \bigcirc Coherence Time: Tc = 2.5-5ms.
- □ Implications: A deep fade on a tone can persist for 2.5-5 ms! Closed-loop estimation is valid only for 2.5-5 ms.

Figure 3.18: The shape of the Doppler power spectrum $\rho_t(\Delta f)$ determines the correlation envelope of the channel in time (top).

Fading Summary: Time-Varying Channel Impulse Response

Figure 3.12: The delay τ corresponds to how *long* the channel impulse response lasts. The channel is time varying, so the channel impulse response is also a function of time, i.e. $h(\tau,t)$, and can be quite different at time $t + \Delta t$ than it was at time t.

- \blacksquare #1: At each tap, channel gain lhl is a Rayleigh distributed r.v.. The random process is <u>not</u> IID.
- \blacksquare #2: Response spreads out in the time-domain (τ) , leading to inter-symbol interference and deep fades in the frequency domain: "frequency-selectivity" caused by multi-path fading
- #3: Response completely vanish (deep fade) for certain values of t: "*Time-selectivity*" caused by doppler effects (frequency-domain dispersion/spreading)

Fading: Jargon

- □ Flat fading: no multipath ISI effects.
 - □ Eg: narrowband, indoors
- **Frequency-selective fading:** multipath ISI effects.
 - □ Eg: broadband, outdoor.
- □ Slow fading: no doppler effects.
 - □ Eg: indoor Wifi home networking
- **Fast Fading:** doppler effects, time-selective channel
 - □ Eg: cellular, vehicular
- □ Broadband cellular + vehicular => Fast + frequency-selective

Power Delay Profile => Inter-Symbol interference

- ☐ Higher bandwidth => higher symbol rate, and smaller time per-symbol
- Lower symbol rate, more time, energy per-symbol
- ☐ If the delay spread is longer than the symbol-duration, symbols will "smear" onto adjacent symbols and cause symbol errors

Multipath Fading Example

Example 3.5:

Consider a wideband channel with multipath intensity profile

$$A_c(\tau) = \begin{cases} e^{-\tau/.00001} & 0 \le \tau \le 20 \text{ } \mu\text{sec.} \\ 0 & \text{else} \end{cases}.$$

Find the mean and rms delay spreads of the channel and find the maximum symbol rate such that a linearly-modulated signal transmitted through this channel does not experience ISI.

Solution: The average delay spread is

ead is
$$\mu_{T_m} = \frac{\int_0^{20*10^{-6}} \tau A_c(\tau) d\tau}{\int_0^{20*10^{-6}} e^{-\tau/.00001} d\tau} = 6.87 \ \mu \text{sec.}$$

$$\mu_{T_m} = \frac{\int_0^{20*10^{-6}} \tau A_c(\tau) d\tau}{\int_0^{20*10^{-6}} e^{-\tau/.00001} d\tau} = 6.87 \ \mu \text{sec.}$$

The rms delay spread is

$$\sigma_{T_m} = \sqrt{\frac{\int_0^{20*10^{-6}} e^{-\tau/.00001} d\tau}{\int_0^{20*10^{-6}} (\tau - \mu_{T_m})^2 e^{-\tau} d\tau}}} = 5.25 \ \mu \text{sec.}$$

$$\sigma_{T_m} = \sqrt{\frac{\int_0^{20*10^{-6}} (\tau - \mu_{T_m})^2 e^{-\tau} d\tau}{\int_0^{20*10^{-6}} e^{-\tau} d\tau}} = 5.25 \ \mu \text{sec.}$$

We see in this example that the mean delay spread is roughly equal to its rms value. To avoid ISI we require linear modulation to have a symbol period T_s that is large relative to σ_{T_m} . Taking this to mean that $T_s > 10\sigma_{T_m}$ yields a symbol period of $T_s = 52.5 \,\mu \text{sec}$ or a symbol rate of $R_s = 1/T_s = 19.04$ Kilosymbols per second. This is a highly constrained symbol rate for many wireless systems. Specifically, for binary modulations where the symbol rate equals the data rate (bits per second, or bps), high-quality voice requires on the order of 32 Kbps and high-speed data requires on the order of 10-100 Mbps.

Key Wireless Channel Parameters

Table 3.1: Key wireless channel parameters

Symbol	Parameter		
α	path loss exponent		
σ_s	Log normal shadowing standard deviation		
f_D	Doppler spread (maximum Doppler frequency), $f_D = \frac{vf_c}{c}$		
T_c	Channel coherence time, $T_c \approx f_D^{-1}$		
$\tau_{\rm max}$	Channel delay spread (maximum)		
$\tau_{\rm RMS}$	Channel delay spread (RMS)		
B_c	Channel coherence bandwidth, $B_c \approx \tau^{-1}$		
θ_{RMS}	Angular spread (RMS)		

Fading: Design Impacts (Eg: Wimax)

Table 3.3: Summary of Broadband Fading Parameters, with Rules of Thumb

Quantity	If "Large"?	If "Small" ?	WiMAX Design Impact	
. Delay Spread, $ au$	If $\tau \gg T$, then fre-	If $\tau \ll T$, then fre-	The larger the delay spread rela-	
***************************************	quency selective	quency flat	tive to the symbol time, the more severe the ISI.	
Coherence Band-	If $\frac{1}{B_c} \ll T$, then fre-	If $\frac{1}{B_c} \gg T$, then fre-	Provides a guideline to subcarrier	
width, B_c	quency flat	quency selective	width $B_{\rm sc} \approx B_c/10$, and hence	
******			number of subcarriers needed in	
*******************	************		OFDM: $L \geq 10B/B_c$:	
Doppler spread,	If $f_c v \gg c$, then fast fad-	If $f_c v \leq c$, then slow	As $f_D/B_{ m sc}$ becomes nonnegligi-	
$f_D = \frac{f_c v}{c}$	ing	fading	ble, subcarrier orthogonality is	
******************			compromised	
Coherence Time,	If $T_c \gg T$, then slow	If $T_c \leq T$, then fast fad-	T_c small necessitates frequent	
T_c	fading	ing	channel estimation and limits the	
***************************************			OFDM symbol duration, but pro-	
			vides greater time diversity.	
1 10 1027 1237 2 1				

Orthogonal Frequency Division Multiplexing

Motivation

• High bit-rate wireless applications in a multipath radio environment.

- OFDM can enable such applications without a high complexity receiver.
- OFDM is part of WLAN, DVB, and BWA standards and is a strong candidate for some of the 4G wireless technologies.

What is OFDM?

- Modulation technique
 - □ Requires channel coding
 - Solves multipath problems

Transmitter:

Multipath Propagation

Reflections from walls, etc.

- □ Time dispersive channel
 - □ Impulse response:

- Problem with high rate data transmission:
 - □ inter-symbol-interference

Inter-Symbol-Interference

Transmitted signal:

Received Signals:

Line-of-sight:

Reflected:

The **symbols add up** on the
channel

→ Distortion!

The Frequency-Selective Radio Channel

- ☐ Interference of reflected (and LOS) radio waves
 - □ Frequency-dependent fading

Concept of parallel transmission (2) Channel impulse Channel transfer function response Signal is 1 Channel (serial) "broadband" 2 Channels 8 Channels Channels are "narrowband"

A Solution for ISI channels

- Conversion of a high-data rate stream into several low-rate streams.
- Parallel streams are modulated onto orthogonal carriers.
- Data symbols modulated on these carriers can be recovered without mutual interference.
- Overlap of the modulated carriers in the frequency domain - different from FDM.

OFDM

- OFDM is a multicarrier block transmission system.
- Block of 'N' symbols are grouped and sent parallely.
- No interference among the data symbols sent in a block.

OFDM Mathematics

$$s(t) = \sum_{k=0}^{N-1} X_k e^{j2\pi f_k t}$$
 $t = [0,T_{os}]$

Orthogonality Condition

$$\int_{0}^{T_{os}} g_{1}(t).g_{2}^{*}(t)dt = 0$$

In our case

$$\int_{0}^{T_{os}} e^{j2\pi f_{p}t} . e^{-j2\pi f_{q}t} dt = 0$$

For $p \neq q$ Where $f_k = k/T_{os}$

Spectrum of the modulated data symbols

- \square Rectangular Window of duration T_0
- Has a sinc-spectrum with zeros at $1/T_0$
- Other carriers are put in these zeros
- □ → sub-carriers are orthogonal

N sub-carriers:

$$S_{BB,k}(t) = w(t - kT) \left[\sum_{i=0}^{N-1} x_{i,k} e^{j2\pi i\Delta f(t-kT)} \right]$$

OFDM terminology

- Orthogonal carriers referred to as subcarriers {f_i,i=0,....N-1}.
- OFDM symbol period {T_{os}=N x T_s}.
- Subcarrier spacing $\Delta f = 1/T_{os}$.

OFDM and **FFT**

- Samples of the multicarrier signal can be obtained using the IFFT of the data symbols - a key issue.
- FFT can be used at the receiver to obtain the data symbols.
- No need for 'N' oscillators, filters etc.
- Popularity of OFDM is due to the use of IFFT/FFT which have efficient implementations.

Interpretation of IFFT&FFT

- □ IFFT at the transmitter & FFT at the receiver
- Data symbols modulate the spectrum and the time domain symbols are obtained using the IFFT.
- □ Time domain symbols are then sent on the channel.
- □ FFT at the receiver to obtain the data.

Interference between OFDM Symbols

• Transmitted Signal

• Solution could be guard interval between OFDM symbols

Cyclic Prefix

- Zeros used in the guard time can alleviate interference between OFDM symbols (IOSI problem).
- Orthogonality of carriers is lost when multipath channels are involved.
- Cyclic prefix can restore the orthogonality.

Cyclic Prefix Illustration

OS1,OS2 - OFDM Symbols

T_g - Guard Time Interval

T_s - Data Symbol Period

 T_{os} - OFDM Symbol Period - N * T_{s}

Design of an OFDM System

Other constraints:

- •Nr. of carriers should match FFT size and data packet length
- •considering coding and modulation schemes

Advantages of OFDM

- Solves the multipath-propagation problem
 - □ Simple equalization at receiver
- Computationally efficient
 - □ For broadband systems more efficient than SC
- Supports several multiple access schemes
 - □ TDMA, FDMA, MC-CDMA, etc.
- Supports various modulation schemes
 - □ Adaptability to SNR of sub-carriers is possible

Problems of OFDM (Research Topics)

- Synchronization issues:
 - **□** Time synchronization
 - ☐ Find start of symbols
 - Frequency synchr.
 - □ Find sub-carrier positions
- Non-constant power envelope
 - Linear amplifiers needed
- Channel estimation:
 - □ To retrieve data
 - Channel is time-variant

OFDM Receiver

Synchronization

- Timing and frequency offset can influence performance.
- Frequency offset can influence orthogonality of subcarriers.
- Loss of orthogonality leads to Inter Carrier Interference.

Peak to Average Ratio

- Multicarrier signals have high PAR as compared to single carrier systems.
- PAR increases with the number of subcarriers.
- Affects power amplifier design and usage.

OFDM for Communication Systems

For a given OFDM system find a suitable multiple access scheme that maps the user data to a modulation block!

OFDM Multiple Access Schemes

