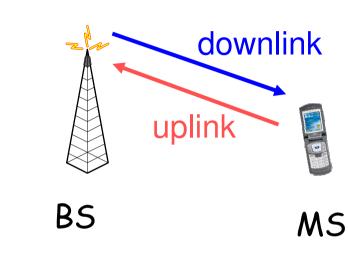
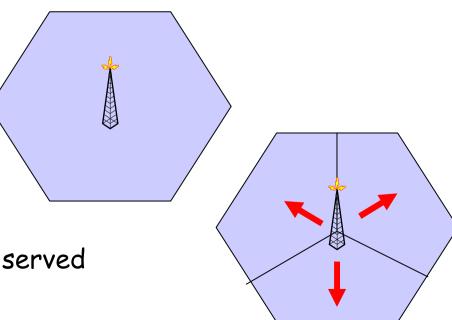
EC 551 Telecommunication System Engineering

Mohamed Khedr

http://webmail.aast.edu/~khedr

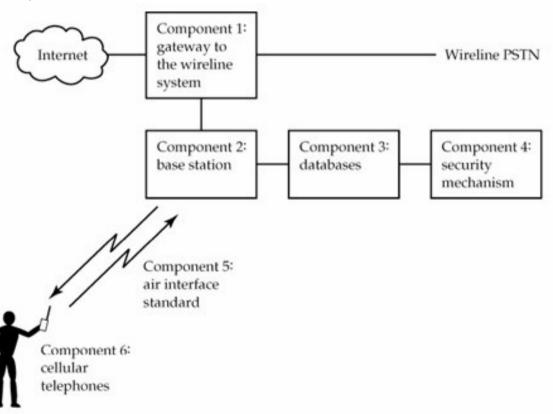

Syllabus


Tentatively

Week 1	Overview		
Week 2	Wireless Channel characteristics		
Week 3	OFDM and modulation techniques		
Week 4	Coding techniques in wireless systems		
Week 5	WiMax		
Week 6	WiMax Physical Layer		
Week 7	WLAN Physical Layer		
Week 8	WLAN MAC Layer		
Week 9	Cellular Communication Concept		
Week 10	FDMA, TDMA, CDMA and Duplexing		
Week 11	GSM System		
Week 12	GPRS System		
Week 13	UMTS		
Week 14	IP networks		
Week 15	VOIP		

Terminologies: BS, MS, Cell, Sector

- Base station (BS)
 - Access point (AP)
- Mobile station (MS)
 - SS (Subscriber station)
 - MT (mobile terminal)
 - MN (mobile node)
- Downlink
 - Forward link
 - BS→MS
- Uplink
 - Reverse link
 - MS→BS
- · Cell
 - Coverage area of a BS
- Sector
 - Partial area of a cell that is served by a directional antenna



3

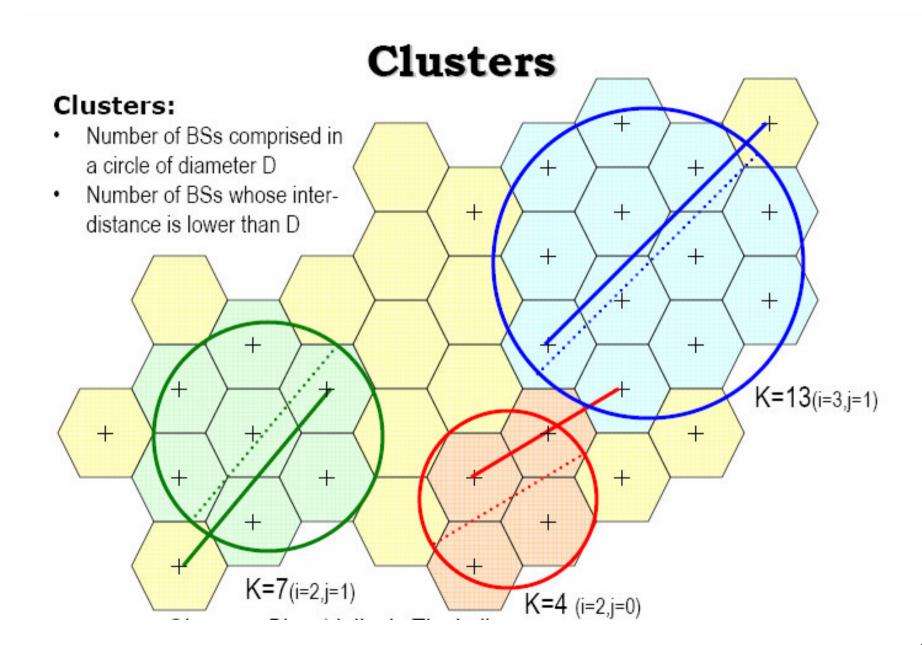
Abstract model for a cellular system

· Components

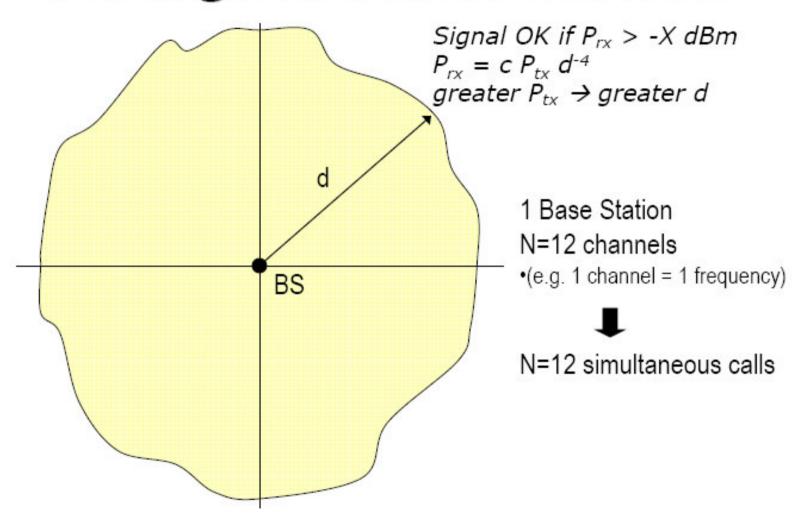
- Gateway to the wireline system (backhaul)
- Base station (BS)
- Database
- Security
- Air interface
- Cellular phone

Basic Cellular Concept

· "Cell"

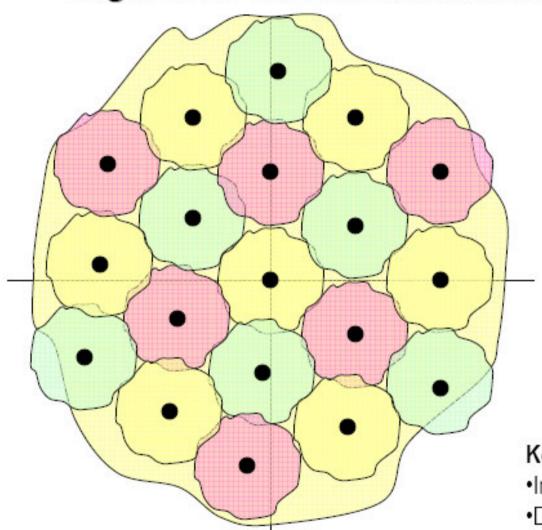

- Typically, cells are hexagonal
- In practice, it depends on available cell sites and radio propagation conditions

Spectrum reuse


- Reuse the same EM spectrum in other geographical location
- Frequency reuse factor

Frequency Reuse

- · Cluster
 - A group of cells
- Frequency reuse factor
 - (Total # of channels in a cluster) / (Total # of channels in a cell)



Coverage for a terrestrial zone

Cellular coverage

target: cover the same area with a larger number of BSs

19 Base Station

12 frequencies

4 frequencies/cell

Worst case:

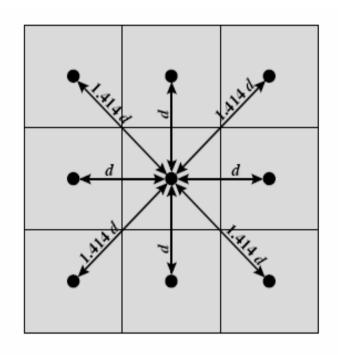
4 calls (all users in same cell)

Best case:

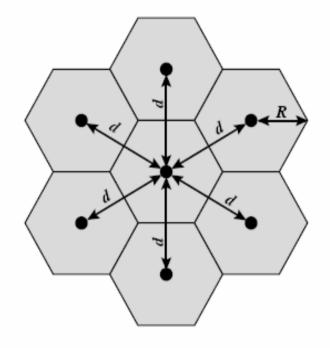
76 calls (4 users per cell)

Average case >> 12

Low transmit power

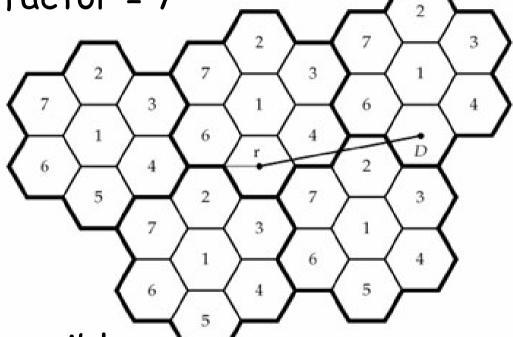

Key advantages:

- Increased capacity (freq. reuse)
- Decreased tx power


Cellular coverage (microcells)

Cellular Geometries

(a) Square pattern


(b) Hexagonal pattern

A frequency reuse example

Example

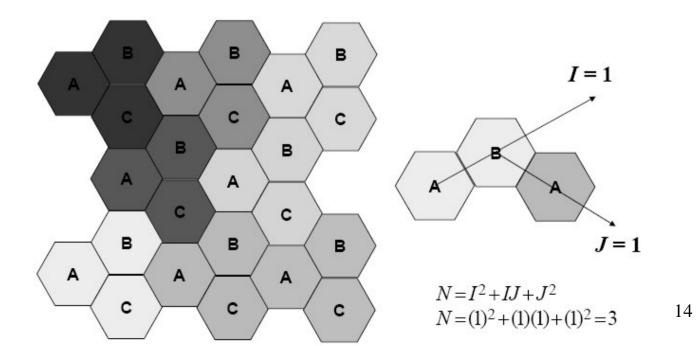
- Frequency reuse factor = 7

- Cluster size = 7

· Question

- What are other possible frequency reuse patterns?

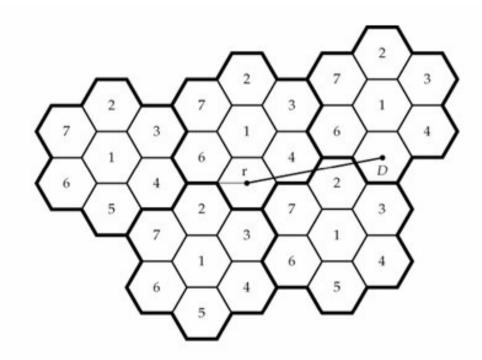
Cluster


- The hexagon is an ideal choice for macrocellular coverage areas, because it closely approximates a circle and offers a wide range of tessellating reuse cluster sizes.
- A cluster of size N can be constructed if,
 - $-N = i^2 + ij + j^2$.
 - i,j are positive integer
- · Allowable cluster sizes are
 - N = 1,3,4,7,9,12,...

$$N = I^2 + IJ + J^2$$

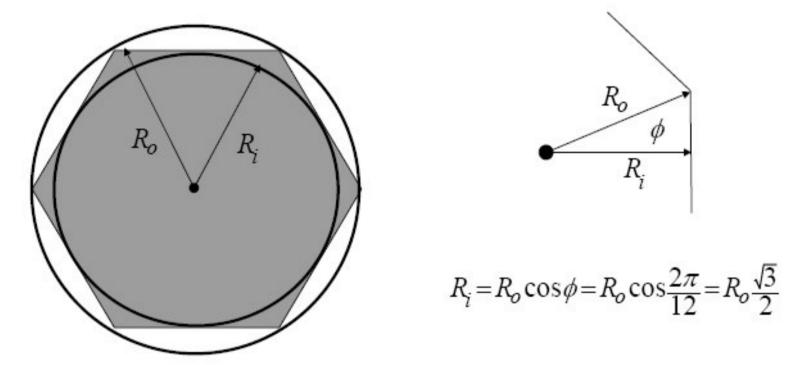
 $N = (2)^2 + (2)(1) + (1)^2 = 7$

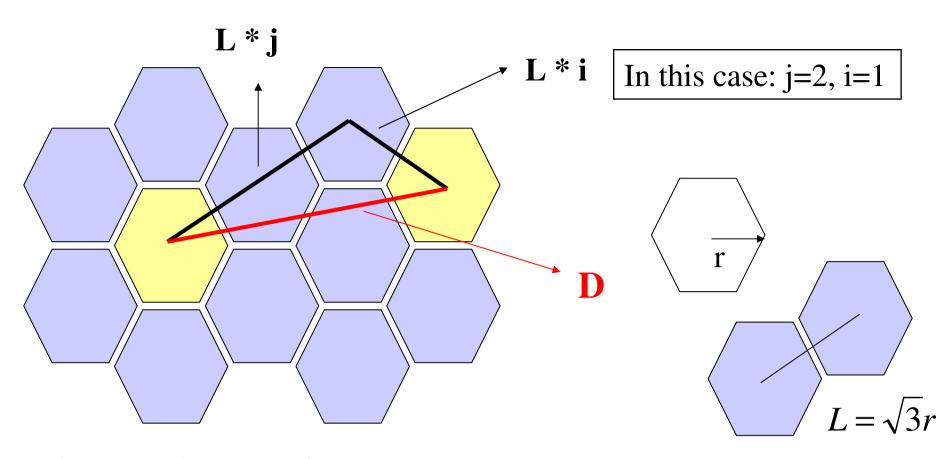
J=1


....

For N = 3 we have:

Example: N=7


- Frequency reuse factor N=7
 - $-N = i^2 + ij + j^2$
 - -(i,j)=(1,2) or (2,1)
- · Other commonly used patterns
 - -N=3
 - · (1,1)
 - N=4
 - · (2,0); (0,2)
- N=1 is possible
 - CDMA


Reuse distance

- Notations
 - D: Reuse distance
 - · Distance to cell using the same frequency
 - r : Cell radius
 - N: Frequency reuse factor
- · Relationship between D and r
 - $-D/r=(3N)^0.5$
 - $-N = i^2 + ij + j^2$

For a hexagon we can define both an inner radius and an outer radius. Both are useful.

Note that a hexagon has 6 faces or, equivalently, 12 "half-faces."

$$D^{2} = (L \cdot i)^{2} + (L \cdot j)^{2} - 2(L \cdot i)(L \cdot j)\cos(2\pi/3)$$

$$D^{2} = L^{2} \cdot i^{2} + L^{2} \cdot j^{2} - 2L^{2} \cdot i \cdot j \cdot (-0.5)$$

$$D^2 = L^2(i^2 + j^2 + ij)$$

$$D/r = \sqrt{3(i^2 + j^2 + ij)} = \sqrt{3N}$$

Compute D based on "law of cosine"

Reuse distance

→ General formula $D = R\sqrt{3K}$

$$D = R\sqrt{3K}$$

→ Valid for hexagonal geometry

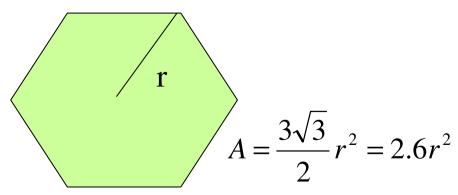
→ D = reuse distance

→ R = cell radius

→ q = D/R = frequency reuse factor

K	q=D/R	
3	3,00	
4	3,46	
7	4,58	
9	5,20	
12	6,00	
13	6,24	

Possible clusters all integer i,j values


i	j	K=ii+jj+ij	q=D/R
1	0	1	1,73
1	1	3	3,00
2	0	4	3,46
2	1	7	4,58
2	2	12	6,00
3	0	9	5,20
3	1	13	6,24
3	2	19	7,55
3	3	27	9,00
4	0	16	6,93
4	1	21	7,94
4	2	28	9,17
4	3	37	10,54
4	4	48	12,00
5	0	25	8,66
5	1	31	9,64

Determine frequency reuse pattern

- · Co-channel interference [CCI]
 - one of the major factors that limits cellular system capacity
 - CCI arises when the same carrier frequency is used in different cells.
- · Determine frequency reuse factor
 - Propagation model
 - Sensitivity to CCI

Compute total system capacity

- Example
 - Total coverage area = $100 \text{ mile}^2 = 262.4 \text{ km}^2$
 - Total 1000, 1256 duplex channels
 - Cell radius = 1km , 0.5km
 - N=4 or N=7
- What's the total system capacity for N=4 and N=7?

Compute total system capacity

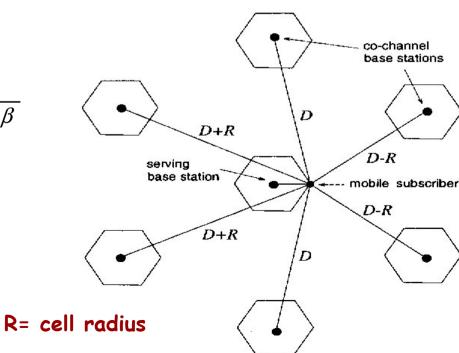
- # of cells = 262.4/2.6=100 cells
- # of usable duplex channels/cell
 - S=(# of channels)/(reuse factor)
 - $-S_4=1000/4=250$
 - $-S_7=1000/7=142$
- Total system capacity (# of users could be accommodated simultaneously)
 - C=5*(# of cells)
 - C₄=250*100=25000
 - C₇=142*100=14200

Cellular concepts

- W total available spectrum, B bandwidth per user, N is the frequency reuse factor, m number of cells, number of simultaneous users is given by n = (m/B)*(W/N)
- # of users can be increased by
 - Increasing m (cells)
 - Decreasing cluster size (N)
- · A small cell size
 - Results in longer battery life
 - Reduces handset size
 - Increases handoffs
 - Increases signaling load
 - Increases the complexity of design and network deployment

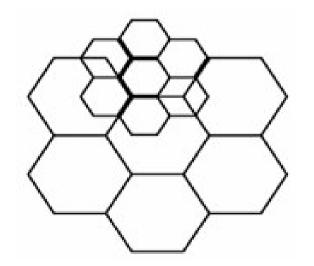
Practical deployment issues

- Location to setup antenna
 - Antenna towers are expensive
 - Local people do not like BSs
 - Antenna/BS does not look like antenna/BS
- Antenna
 - Omni-directional
 - Directional antenna


Worst-Case CCI on the Forward Channel

 Co channel interference [CCI] is one of the prime limitations on system capacity. We use the propagation model to calculate CCI.

 There are six first-tier, co-channel BSs, two each at (approximate) distances of D-R, D, and R+D and the worst case (average) Carrier-to-(Co-Channel) Interference [CCI] is


$$\Lambda = \frac{1}{2} \frac{R^{-\beta}}{(D-R)^{-\beta} + D^{-\beta} + (D+R)^{-\beta}}$$

Worst case CCI on the forward channel

Cell splitting

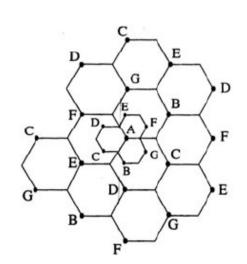
- · Smaller cells have greater system capacity
 - Better spatial reuse
- As traffic load grows, larger cells could split into smaller cells

Cell splitting is the technique of splitting a congested cell into smaller cells.

- → New (smaller cells) have their own base stations with reduced antenna height and reduced power.
- → Cell splitting increases capacity since frequency reuse can be increased.
- → Cell splitting preserves the geometry of the architecture and therefore simply scales the geometry of the architecture.
- → In the following figure the cell radius has been reduced by half.

the simple propagation model

$$P_{R} = P_{o} \left(\frac{d}{d_{o}} \right)^{-n}$$


At the cell boundary the distance d is R, the unsplit cell radius. Consider both an unsplit and a split scenario. For the unsplit case

$$P_{r(unsplit)} = P_{t,unsplit} R^{-n}$$

For the split case

$$P_{r(split)} = P_{t,split} \left(\frac{R}{2}\right)^{-n}$$

$$P_{r,split} = P_{t,split} R^{-n} 2^{n}$$

For the received signal powers to be equal we must have

$$P_{t,unsplit}R^{-n} = P_{t,split}R^{-n}2^n$$

The ratio of transmitted powers is important. Consider the following:

$$\frac{P_{t,split}}{P_{t,unsplit}} = 2^{-n}$$

Note the role of the path loss exponent. For n = 4, the transmitted can be reduced by a factor of 16 and still provide equal received signal powers.