EC 551 Telecommunication System Engineering

Mohamed Khedr

http://webmail.aast.edu/~khedr

Syllabus

Tentatively

Week 1	Overview	
Week 2	Wireless Channel characteristics	
Week 3	OFDM and modulation techniques	
Week 4	Coding techniques in wireless systems	
Week 5	WiMax	
Week 6	WiMax Physical Layer	
Week 7	WLAN Physical Layer	
Week 8	WLAN MAC Layer	
Week 9	Cellular Communication Concept	
Week 10	FDMA, TDMA, CDMA and Duplexing	
Week 11	GSM System	
Week 12	GPRS System	
Week 13	UMTS	
Week 14	IP networks	
Week 15	VOIP	

Compute total system capacity

- Example
 - Total coverage area = 100 mile² = 262.4 km²
 - Total 1000, 1256 duplex channels
 - Cell radius = 1km , 0.5km
 - N=4 or N=7
- What's the total system capacity for N=4 and N=7?

Compute total system capacity

- # of cells = 262.4/2.6=100 cells
- # of usable duplex channels/cell
 - S=(# of channels)/(reuse factor)
 - $S_4 = 1000/4 = 250$
 - $S_7 = 1000/7 = 142$
- Total system capacity (# of users could be accommodated simultaneously)
 - C=S*(# of cells)
 - $C_4 = 250*100 = 25000$
 - $C_7 = 142 * 100 = 14200$

Cellular concepts

- W total available spectrum, B bandwidth per user, N is the frequency reuse factor, m number of cells, number of simultaneous users is given by n = (m/B)*(W/N)
- # of users can be increased by
 - Increasing m (cells)
 - Decreasing cluster size (N)
- A small cell size
 - Results in longer battery life
 - Reduces handset size
 - Increases handoffs
 - Increases signaling load
 - Increases the complexity of design and network deployment

Worst-Case CCI on the Forward Channel

- Co channel interference [CCI] is one of the prime limitations on system capacity. We use the propagation model to calculate CCI.
- There are six first-tier, co-channel BSs, two each at (approximate) distances of D-R, D, and R+D and the worst case (average) Carrier-to-(Co-Channel) Interference [CCI] is

$$\Lambda = \frac{1}{2} \frac{R^{-\beta}}{(D-R)^{-\beta} + D^{-\beta} + (D+R)^{-\beta}}$$

Worst case CCI on the forward channel

Cell splitting

- Smaller cells have greater system capacity
 - Better spatial reuse
- As traffic load grows, larger cells could split into smaller cells

- → New (smaller cells) have their own base stations with reduced antenna height and reduced power.
- → Cell splitting increases capacity since frequency reuse can be increased.
- → Cell splitting preserves the geometry of the architecture and therefore simply scales the geometry of the architecture.
- → In the following figure the cell radius has been reduced by half.

the simple propagation model

$$P_{R} = P_{o} \left(\frac{d}{d_{o}} \right)^{-n}$$

At the cell boundary the distance d is R, the unsplit cell radius. Consider both an unsplit and a split scenario. For the unsplit case

$$P_{r(unsplit)} = P_{t,unsplit} R^{-n}$$

For the split case

$$P_{r(split)} = P_{t,split} \left(\frac{R}{2}\right)^{-n}$$

$$P_{r,split} = P_{t,split} R^{-n} 2^{n}$$

For the received signal powers to be equal we must have

$$P_{t,unsplit}R^{-n} = P_{t,split}R^{-n}2^n$$

The ratio of transmitted powers is important. Consider the following:

$$\frac{P_{t,split}}{P_{t,unsplit}} = 2^{-n}$$

Note the role of the path loss exponent. For n = 4, the transmitted can be reduced by a factor of 16 and still provide equal received signal powers.

A Little Piece of History

Elements of the Network

- Subscriber: user who pays subscription charges for using mobile communication services.
- Mobile Station: is a subscriber unit intended for use while on the move at unspecified locations. It could be a hand-held or a portable terminal.
- Base Station: a fixed radio station used for communication with MS. It is located at the centre of a cell and consist of Transmitters and Receivers.
- Mobile Switching Centre: it coordinates the routing of calls, do the billing, etc.

Mobile Station

- MS consist of :
 - Mobile Equipment (ME)
 - Subscriber Identification Module (SIM)

SIM Card

- Subscriber Identity Module (SIM) is a smart card which stores information about the subscription and feature of services.
- Stored information including:
 - Authentication Key "Ki"
 - Encryption
 - IMSI and TMSI
- SIM card is protected by a Personal Identity Number (PIN) of the user

Base Station Subsystem

- BTS: Base Transceiver station
 - 3 Antennas: 2 Rx & 1 Tx.
 - Microwave link with the network
- BSC: Base station controller
 - Control many (BTS)
 - It handles many functions:
 - Channel Allocation
 - Link quality Supervision

Base Station Subsystem

- Transmission of broadcast messages
- Controlling power level
- Controlling frequency hopping
- Error correction coding and decoding
- Hardware processing
- Data and signaling encryption
- Digital speech transcoding
- Data rate adaptation

- BSC control RRM for BTSs.
- BSC handle radiochannel setup, frequency hopping, and handover within BSC

- BSS consist of two part :
 - Base Transceiver Station (BTS)
 - Base Station Controller (BSC)
- BTS is a radio-end which determine a cell coverage and provide link with MS.
- BTS include Transmitters and Receivers, antenna and signal processing unit as well as interface.
- BTS communicate with MS via air interface

- As a central switch for routing the traffic
- Control BSC via A-interface
- As a interconnection between GSM network with other Networks via Internetworking Function (IWF)

Home Location Register (HLR)

- HLR contain database of users, including all the subscription records
- HLR records the update location of every user for mobility management purposes

GSM Architecture

MSC: Mobile Service Switching center

- Co-ordinates call setup
- One MSC control several BSC

HLR:Home Location Register

Database of all subscribers information

AUC:Authentication center

Manage the security data for subscriber authentication

EIR: Equipment Identity Register

Database of all Mobile Equipments

VLR:Home Location Register

Database of all visitors information

GMSC:Gateway MSC

Gateway to the PSTN

GIWU:Gateway Networking Unit

For Communication with users outside GSM

- Operation and Maintenance Subsystem:
 - Network operation and maintenance
 - Subscription management: charging and billing.
 - Mobile equipment management

Spectrum Sharing

890 MHz	Uplink/Reverse Link: MS to BS	915 MHz
	124 channels, 200 KHz each	
	124 channels, 200 KHz each	
935 MHz	Downlink/Forward Link: BS to MS	960 MHz

124 Traffic Channels x 8 Slots/Ch = 992 simultaneous conversations

13 kbps speech coding data rate 9.6 kbps data rate half rate coders being developed

Total Band=25 MHz

FDM

124 Carrier 200KHz apart

TDMA

- Every channel is shared among 8 users
- There are 124 Carriers each shared among 8 users.
- A User is assigned a certain time slot on a certain carrier (C_n,TS_k)

Channels Space (Copy Right)

Channels

- Physical Channel:
 - It's a time slot on any carrier (C_n,TS_k).
- Logical Channel:
 - It's a channel mapped on a physical channel to do a certain job

Channel Types

- Traffic Channels (TCH)
 - Used after call setup for transmission of speech.
- Control Channels (CCH)
 - Over head channels used for network administration and SMS.

Broadcast Channels

Common Control Channels

Broadcast Channels

Common Control Channels

Broadcast Channels

- (FCCH): Frequency Correction Channel
 - No Data just pure carrier
- (SCH): Synchronization Channel
 - Broadcast Mobile Network Identity Code
 - Broadcast Base Station Identity Code
 - Broadcast Current frame number
- (BCCH): Broadcast Control Channel
 - Broadcast location area Identity
 - Broadcast maximum output power
 - Broadcast C₀ of neighboring cells

Broadcast Channels

Common Control Channels

- Common Control Channels
 - (PCH): Paging Control Channel
 - Declare a coming call
 - (RACH): Random Access Channel
 - Used to initiate a call
 - Used to respond to a paging
 - (AGCH): Access Grant Channel
 - Used to assign a dedicated channel for further communication

Broadcast Channels

Common Control Channels

- Dedicated Channels
 - (SDCCH): Stand alone dedicated control Channel
 - Call setup procedure
 - SMS
 - (SACCH): Slow Associated control Channel
 - (↓) Setup power level and time advance
 - (↑) Inform the BS about received power level
 - (FACCH): Fast Associated control Channel
 - Stolen for urgent hardover

Burst

- It's the information contained in one time slot
- 1 time slot = 0.577 m.sec.
- I frame = 8 time slots = 4.615 m.sec.

Mapping f

Traffic Multiframe (26 Frames)

It's repeated on C₀, TS₂₋₇ and all TS's on all other carriers

Control Multiframe (51 frames)

C₀, TS₀:

Control Multiframe (51 frames)

C₀, TS₁:

D:Stand alone (Call setup – SMS)

S:Slow Associated (Power Level-Time Advance)

TDMA Frame Structure

- 1 time slot = <u>15/26 m.sec</u>
- 1 frame = 8 time slots = <u>120/26 m.sec.</u>
- 1 traffic multiframe= 26 frame= <u>120 m.sec</u>
- 1 Control multiframe= 51 frame= 235 m.sec
- 1 Super frame = 51 traffic*26 frame
 - = 1326 frames = **6.12 sec**
- 1 hyperframe= 2048 superframe
 - = 3 hours 28 minutes 53.76 sec

Air Interface

- \Rightarrow Rate = 270 kbps
- → 1 of 8 slots & 12 of 13 frames are used, Rate = 270*(1/8)*(12/13) = 31.15 kbps
- → 114 bits of 156.25 bits are useful, Rate = 31.15*(114/156.25) = 22.73 kbps
- → 9.73 kbps used for Error Correction, Rate = 22.73 - 9.73 = 13 kbps

Notes

- C₀ is called the beacon and is transmitted with the maximum available power in the cell.
- There is a 3 time slots time shift between the uplink and the downlink, this simplify the circuits and enable using one antenna and a duplexer.

Allocated GSM Frequency Bands

GSM900:

up: 890~915MHz

down: 935~960MHz

duplex interval: 45MHz

bandwidth: 25MHz,

frequency interval: 200KHz

EGSM900:

up: 880~890MHz

down: 925~935MHz

duplex interval: 45MHz

bandwidth: 10MHz,

frequency interval: 200KHz

GSM1800:

up: 1710-1785MHz

down: 1805-1880MHz

duplex interval: 95MHz, working

bandwidth: 75MHz,

frequency interval: 200KHz

GSM1900MHz:

up:1850~1910MHz

down:1930~1990MHz duplex interval: 80MHz,

working bandwidth: 60MHz,

frequency interval: 200KHz

Diversity ion Technology

The multi-path propagation of radio signals causes magnitude fading and delay time.

- Space Diversity (antenna diversity)
- Polarization Diversity orthogonal polarization diversity. horizontal polarization and vertical polarization.
- ❖ Frequency Diversity
 The working principle of this technology is that such fading won't take place on the frequency outside the coherence bandwidth of the channel.