Data and Computer Communications

Chapter 9 – Spread Spectrum

Eighth Edition by William Stallings

Lecture slides by Lawrie Brown

Spread Spectrum

> important encoding method for wireless communications analog & digital data with analog signal > spreads data over wide bandwidth makes jamming and interception harder <u>two approaches</u>, both in use: Frequency Hopping Direct Sequence

General Model of Spread Spectrum System

Spread Spectrum Advantages

immunity from noise and multipath distortion

> can hide / encrypt signals

several users can share same higher bandwidth with little interference

CDM/CDMA Mobile telephones

Pseudorandom Numbers

> generated by a deterministic algorithm not actually random • but if algorithm good, results pass reasonable tests of randomness starting from an initial seed need to know algorithm and seed to predict sequence bence only receiver can decode signal

Frequency Hopping Spread Spectrum (FHSS)

- > signal is broadcast over seemingly random series of frequencies
- receiver hops between frequencies in sync with transmitter
- > eavesdroppers hear unintelligible blips
- jamming on one frequency affects only a few bits

Frequency Hopping Example

FHSS (Transmitter)

Frequency Hopping Spread Spectrum System (Receiver)

Slow and Fast FHSS

> commonly use multiple FSK (MFSK) > have frequency shifted every T_c seconds > duration of signal element is T_s seconds > Slow FHSS has $T_c \ge T_s$ > Fast FHSS has $T_c < T_s$ > FHSS quite resistant to noise or jamming with fast FHSS giving better performance

Slow MFSK FHSS

Fast MFSK FHSS

Direct Sequence Spread Spectrum (DSSS)

- each bit is represented by multiple bits using a spreading code
- > this spreads signal across a wider frequency band
- > has performance similar to FHSS

Direct Sequence Spread Spectrum Example

Direct Sequence Spread Spectrum System

DSSS Example Using BPSK

Approximate Spectrum of DSSS Signal

Code Division Multiple Access (CDMA)

- > a multiplexing technique used with spread spectrum
- given a data signal rate D
- break each bit into k chips according to a fixed chipping code specific to each user
- resulting new channel has chip data rate kD chips per second
- > can have multiple channels superimposed

CDMA Example

CDMA for DSSS

Summary

> looked at use of spread spectrum techniques:

FHSSDSSSCDMA