Data and Computer Communications

Chapter 7 – Data Link Control
Protocols

High Level Data Link Control (HDLC)

- > an important data link control protocol
- > specified as ISO 33009, ISO 4335
- station types:
 - Primary controls operation of link- frames sent by primary are called commands
 - Secondary under control of primary station- frames sent by secondary are called responses
 - Combined issues commands and responses
- > link configurations
 - Unbalanced 1 primary, multiple secondary
 - Balanced 2 combined stations

11.5 **HDLC**

Configurations and Transfer Modes

Frames

Frame Format

Examples

HDLC Transfer Modes

- Normal Response Mode (NRM)
 - unbalanced config, primary initiates transfer
 - used on multi-drop lines, eg host + terminals
- Asynchronous Balanced Mode (ABM)
 - balanced config, either station initiates transmission, has no polling overhead, widely used
- Asynchronous Response Mode (ARM)
 - unbalanced config, secondary may initiate transmit without permission from primary, rarely used

HDLC Frame Structure

- synchronous transmission of frames
- single frame format used

Flag Fields and Bit Stuffing

- delimit frame at both ends with 011111110 seq
- receiver hunts for flag sequence to synchronize
- bit stuffing used to avoid confusion with data containing flag seq 01111110
 - 0 inserted after every sequence of five 1s
 - if receiver detects five 1s it checks next bit
 - if next bit is 0, it is deleted (was stuffed bit)
 - if next bit is 1 and seventh bit is 0, accept as flag
 - if sixth and seventh bits 1, sender is indicating abort

Framing

- Mapping stream of physical layer bits into frames
- Mapping frames into bit stream
- Frame boundaries can be determined using:
 - Character Counts
 - Control Characters
 - Flags
 - CRC Checks

Framing & Bit Stuffing

HDLC frame

Flag Address Control Information FCS Flag

any number of bits

- Frame delineated by flag character
- HDLC uses bit stuffing to prevent occurrence of flag 01111110 inside the frame
- Transmitter inserts extra 0 after each consecutive five 1s inside the frame
- Receiver checks for five consecutive 1s
 - if next bit = 0, it is removed
 - if next two bits are 10, then flag is detected
 - If next two bits are 11, then frame has errors

Example: Bit stuffing & destuffing

(a) Data to be sent

011011111111100

After stuffing and framing

<u>01111110</u>0110111111<u>0</u>111111<u>0</u>000<u>011111110</u>

(b) Data received

After destuffing and deframing

000111011111-11111-110

Bit stuffing is the process of adding one extra 0 whenever there are five consecutive 1s in the data so that the receiver does not mistake the data for a flag.

Bit stuffing and removal

Bit stuffing in HDLC

Address Field

- identifies secondary station that sent or will receive frame
- usually 8 bits long
- may be extended to multiples of 7 bits
 - LSB indicates if is the last octet (1) or not (0)
- > all ones address 11111111 is broadcast

Control Field

- different for different frame type
 - Information data transmitted to user (next layer up)
 - Flow and error control piggybacked on information frames
 - Supervisory ARQ when piggyback not used
 - Unnumbered supplementary link control
- first 1-2 bits of control field identify frame type

HDLC frame types

S-frame control field in HDLC

Code

RR RNR REJ SREJ

U-frame control field in HDLC

Table 11.1 U-frame control command and response

Command/response	Meaning
SNRM	Set normal response mode
SNRME	Set normal response mode (extended)
SABM	Set asynchronous balanced mode
SABME	Set asynchronous balanced mode (extended)
UP	Unnumbered poll
UI	Unnumbered information
UA	Unnumbered acknowledgment
RD	Request disconnect
DISC	Disconnect
DM	Disconnect mode
RIM	Request information mode
SIM	Set initialization mode
RSET	Reset
XID	Exchange ID
FRMR	Frame reject

Control Field

- use of Poll/Final bit depends on context
- in command frame is P bit set to1 to solicit (poll) response from peer
- in response frame is F bit set to 1 to indicate response to soliciting command
- > seq number usually 3 bits
 - can extend to 8 bits as shown below

Information & FCS Fields

- > Information Field
 - in information and some unnumbered frames
 - must contain integral number of octets
 - variable length
- Frame Check Sequence Field (FCS)
 - used for error detection
 - either 16 bit CRC or 32 bit CRC

HDLC Operation

- consists of exchange of information, supervisory and unnumbered frames
- have three phases
 - initialization
 - by either side, set mode & seq
 - data transfer
 - with flow and error control
 - using both I & S-frames (RR, RNR, REJ, SREJ)
 - disconnect
 - when ready or fault noted

HDLC Operation Example

HDLC Operation Example

Figure 11.22 shows an exchange using piggybacking where there is no error. Station A begins the exchange of information with an Iframe numbered 0 followed by another I-frame numbered 1. Station B piggybacks its acknowledgment of both frames onto an Iframe of its own. Station B's first I-frame is also numbered 0 [N(S) field] and contains a 2 in its N(R) field, acknowledging the receipt of A's frames 1 and 0 and indicating that it expects frame 2 to arrive next. Station B transmits its second and third I-frames (numbered 1 and 2) before accepting further frames from station A. Its N(R) information, therefore, has not changed: B frames 1 and 2 indicate that station B is still expecting A frame 2 to arrive next.

In Example 3, suppose frame 1 sent from station B to station A has an error. Station A informs station B to resend frames 1 and 2 (the system is using the Go-Back-N mechanism). Station A sends a reject supervisory frame to announce the error in frame 1. Figure 11.23 shows the exchange.

Summary

- > introduced need for data link protocols
- > flow control
- error control
- > HDLC