

COLLEGE OF ENGINEERING & TECHNOLOGY

Department : Electronics & Communications Engineering

- Lecturer: Prof. Mohamed Essam KhedrGTA: Eng. Hatem Abou-zeidCourse: Communication Systems II
- Course Code : EC 421

Sheet (9)- Random Processes -II

1- Let X and Y be statistically independent Gaussian distributed random variables each with zero mean and unit variance. Define the Gaussian process

 $Z(t) = X \cos 2\pi t + Y \sin 2\pi t$

Determine the joint probability density function of the random variables $Z(t_1)$ and $Z(t_2)$ obtained by observing Z(t) at times t_1 and t_2 respectively.

2- $X_1(t)$, $X_2(t)$, $X_3(t)$ are statistically independent.

If $Z(t) = 10 X_1(t) + 5 X_2(t) + X_3(t)$

Find $R_z(\tau)$ and $S_z(f)$

- 3- $X(t, \theta) = A \cos (w_c t + \theta)$ and $Y(t, \theta) = n(t) + X (t, \theta)$
 - n(t) and X $(t,\,\theta)$ are statistically independent and

 $R_n(\tau) = B \operatorname{tri} (\tau / \tau_o)$

 $\begin{array}{ll} P(\theta) = & 1/2\pi & -\pi \leq \theta \leq \pi \\ & 0 & elsewhere \end{array}$ Find $\begin{array}{l} (a) \ P_T, \ P_{dc}, \ P_{ac} \ of \ n(t) \\ (b) \ R_y(\tau) \end{array}$

4- A message m(t) having the shown $S_m(f)$ is AM-SC modulating a carrier at $f_c = 100$ kHz. The resulting AM signal is coherently detected. If the detection BPF has the shown H(f) compare the (S/N)_o with that when using an ideal BPF.

