

COLLEGE OF ENGINEERING & TECHNOLOGY

Department: Electronics & Communications Engineering

Lecturer : Prof. Mohamed Essam Khedr

GTA : Eng. Hatem Abou-zeid

Course : Communication Systems II

Course Code: EC 421

Sheet (5)- Multiple Random Variables

1- Find the marginal pmf's for the pairs of random variables with the indicated joint pmf.

Y	X		
	-1	0	1
-1	1/6	0	1/6
0	0	1/3	0
1	1/6	0	1/6

Find the probability of the events $A = \{X \le 0\}$, $B = \{X \le Y\}$, and $C = \{X = -Y\}$ for the above joint pmf's

2- Let X and Y denote the amplitude of noise signals at two antennas. The random vector (X,Y) has the joint pdf

$$f(x,y) = ax e^{-a x^2/2} by e^{-by^2/2}$$
 x>0, y>0, a>0, b>0

- a. Find the joint cdf
- b. Find P[X>Y]
- c. Find the marginal pdf's
- 3- The random variable (X,Y) has the joint pdf

$$f(x,y) = k(x+y)$$
 0

- a. Find k
- b. Find the joint cdf of (X,Y)
- c. Find the marginal pdf of X and Y

- 4- Let X and Y be independent random variables that are uniformly distributed in [0,1]. Find the probability of the following events:
 - a. $P[X^2 < 1/2, |Y-1| < 1/2]$
 - b. P[X/2 < 1, Y > 0]
 - c. P[XY < 1/2]
 - d. $P[\min(X,Y) > 1/3]$
- 5- Let X and Y be independent exponential random variable. Find the pdf of Z=|X-Y|
- 6- The random variables X and Y have the joint pdf

$$f_{XY}(x,y) = 2 e^{-(x+y)} \qquad 0 \le y \le x < \infty$$

Find the pdf of Z = X+Y. Note: X and Y are not independent

7-

- a. Find $E[(X+Y)^2]$
- b. Find the variance of X+Y
- **C.** Under what condition is the variance of the sum equal to the sum of the individual variances?