EC 553 Communication Networks

Mohamed Khedr

http://webmail.aast.edu/~khedr

McGraw-Hill

Syllabus

Tentatively

Week 1	Overview
Week 2	Packet Switching
Week 3	IP addressing and subnetting
Week 4	IP addressing and subnetting
Week 5	Introduction to Routing concept, Routing algorithms
Week 6	Routing protocols
Week 7	Multiple Access I
Week 8	Multiple access II
Week 9	LAN networks
Week 10	Token ring networks
Week 11	VOIP
Week 12	WLAN
Week 13	ТСР
Week 14	Congestion control
Week 15	QOS

Chapter 13

Multiple Access

McGraw-Hill

Figure 13.6 Persistence strategies

13.2 Control Access

Reservation

Polling

Token Passing

McGraw-Hill

McGraw-Hill

In FDMA, the bandwidth is divided into channels.

McGraw-Hill

In TDMA, the bandwidth is just one channel that is timeshared.

McGraw-Hill

In CDMA, one channel carries all transmissions simultaneously.

McGraw-Hill

Data bit $0 \longrightarrow -1$ Data bit $1 \longrightarrow +1$ Silence $\longrightarrow 0$

Figure 13.16 CDMA multiplexer

Example 1

Check to see if the second property about orthogonal codes holds for our CDMA example.

Solution

The inner product of each code by itself is N. This is shown for code C; you can prove for yourself that it holds true for the other codes.

C. **C** = [+1, +1, -1, -1]. [+1, +1, -1, -1] = 1 + 1 + 1 + 1 = 4

If two sequences are different, the inner product is 0.

B. **C** = [+1, -1, +1, -1]. [+1, +1, -1, -1] = 1 - 1 - 1 + 1 = 0

McGraw-Hill

Example 2

Check to see if the third property about orthogonal codes holds for our CDMA example.

Solution

The inner product of each code by its complement is –N. This is shown for code C; you can prove for yourself that it holds true for the other codes.

 $C \cdot (-C) = [+1, +1, -1, -1] \cdot [-1, -1, +1, +1] = -1 - 1 - 1 - 1 = -4$

The inner product of a code with the complement of another code is 0.

B. (-C) = [+1, -1, +1, -1]. [-1, -1, +1, +1] = -1 + 1 + 1 - 1 = 0

McGraw-Hill

Example of DS multiple access waveforms

McGraw-Hill

wine wcgraw-ни companies, Inc., 2004