EC 553 Communication Networks

Mohamed Khedr

http://webmail.aast.edu/~khedr

Syllabus

Tentatively

Week 1	Overview
Week 2	Packet Switching
Week 3	IP addressing and subnetting
Week 4	IP addressing and subnetting
Week 5	Introduction to Routing concept, Routing algorithms
Week 6	Routing protocols
Week 7	Multiple Access I
Week 8	Multiple access II
Week 9	LAN networks
Week 10	Token ring networks
Week 11	VOIP
Week 12	WLAN
Week 13	ТСР
Week 14	Congestion control
Week 15	QOS

Requirements

- Collision avoidance
 - Basic task medium access control
- Energy efficiency
- Scalability and adaptivity
 - Number of nodes changes overtime
- Latency
- Fairness
- Throughput
- Bandwidth utilization

Source: Schiller

Cotention-based Protocols

- Random assignment approaches
 - Dynamic number of transceivers contend for medium
 - Distributed (peer-to-peer) algorithms for contention
 - Great for dynamic / unplanned or distributed networks
 - Problem: Hidden and Exposed Terminal Problems

Hidden Terminal Problem

Senders A and C separated by obstacle. Each thinks the medium is free.

Senders A and C out of range of each other. Each thinks medium is free.

Hidden Terminal Problem

A and C cannot hear each other.

- A sends to B, C cannot receive A.
- C wants to send to B, C senses a "free" medium (CS fails)

Collision occurs at B.

□ A cannot receive the collision (CD fails).

■ A is "hidden" for C.

Exposed Terminal Problem

Exposed Terminal Problem

- □ A starts sending to B.
- C senses carrier, finds medium in use and has to wait for A->B to end.
- D is outside the range of A, therefore waiting is not necessary.

Contention-based Protocols -Examples

- CSMA Carrier Sense Multiple Access
 - Ethernet
 - Not enough for wireless (collision at receiver)

Hidden terminal: A is hidden from C's CS

- MACA Multiple Access w/ Collision Avoidance
 - RTS/CTS for hidden terminal problem
 - RTS/CTS/DATA

Contention-based Protocols -Examples

- MACAW improved over MACA
 RTS/CTS/DATA/ACK
 - Fast error recovery at link layer
- IEEE 802.11 Distributed Coordination Function (DCF)
 - Largely based on MACAW

Solution for Hidden Terminals

- A first sends a *Request-to-Send (RTS)* to B
- On receiving RTS, B responds Clear-to-Send (CTS)
- Hidden node C overhears CTS and keeps quiet
 - Transfer duration is included in both RTS and CTS
- Exposed node overhears a RTS but not the CTS
 D's transmission cannot interfere at B

802.11 – Reliability: ACKs

- □ When B receives DATA from A, B sends an ACK
- If A fails to receive an ACK, A retransmits the DATA
- Both C and D remain quiet until ACK (to prevent collision of ACK)
- Expected duration of transmission+ACK is included in RTS/CTS packets

IEEE 802.11 DCF

- Distributed coordinate function: ad hoc mode
 - Virtual and physical carrier sense (CS)
 - Network allocation vector (NAV), duration field
 - Binary exponential backoff
 - RTS/CTS/DATA/ACK or DATA/ACK for unicast packets
 - Broadcast packets are directly sent after CS
 - Fragmentation support
 - RTS/CTS reserve time for first (frag + ACK)
 - First (frag + ACK) reserve time for second...
 - Give up tx when error happens

IEEE 802.11 Handshake

- Basic mechanism: 2 way handshaking
- RTS/CTS mechanism: 4 way handshaking

IEEE 802.11 DCF (2)

- Carrier-sensing until channel idle for DIFS period
- If channel not idle, random backoff based on contention window
- If channel idle, RTS-CTS-DATA-ACK or DATA-ACK handshake
- If transmission unsuccessful, double contention window size

IEEE 802.11 DCF (2)

- Carrier-sensing until channel idle for DIFS period
- If channel not idle, random backoff based on contention window
- If channel idle, RTS-CTS-DATA-ACK or DATA-ACK handshake
- If transmission unsuccessful, double contention window size

IEEE 802.11 DCF (3)

Timing relationship

- **DCF** Distributed Coordinated Function (Contention Period - Ad-hoc Mode)
- **PCF** Point Coordinated Function (Contention Free Period – Infrastructure BSS)
- Beacon Management Frame

Synchronization of Local timers

Delivers protocol related parameters

The 802.11 MAC Sublayer Protocol

Inter-Frame Spacing :

- DIFS $34 \mu sec$
- PIFS $25 \mu sec (Used in PCF)$
- SIFS 16 µsec

Slot Time - 9 µsec

DIFS = SIFS + (2 * Slot Time)

SIFS required for turn around of Tx to Rx and vice versa

Data Transmission from Node A to B

- CW Contention Window. Starts only after DIFS.
- Random number 'r' picked form range (0-CW)
- *CW_{min}* minimum value of CW
- CW_{max} maximum value the CW can grow to after collisions
- 'r' can be decremented *only* in CW
- CW doubles after every collision

A Collision between nodes A and C

- Length $(DATA_A) = 10$ Slot times
- Length $(DATA_C) = 15$ Slot times
- CW after Collision $1 \rightarrow 0-7$
- CW after Collision $2 \rightarrow 0 15$
- CW after Collision $3 \rightarrow 0 31$
- CW after Collision $4 \rightarrow 0-6$

NAV – Network Allocation Vector

Point Coordinated Function (PCF)

- Also known as the CFP (Contention Free Period)
- Operation in an Infrastructure BSS
- STAs communicate using central authority known as PC (Point Coordinator) or AP (Access Point)
- No Collisions take place
- AP takes over medium after waiting a period of PIFS
- Starts with issue of a Beacon

AP taking over the Wireless medium using PIFS

IEEE 802.11 Medium Access Control Logic

IEEE 802.11 MAC Timing Basic Access Method

PCF Superframe Timing

(b) PCF Superframe Construction

Ad-Hoc Network

 Ad-Hoc Mode supports mutual communication among wireless clients only

 Infrastructure Network
 Provides the communication between wireless clients and wired network through AP (Access Point).

Basic Transmission Algorithm

Medium Access and IFS

IFS (Inter-Frame Spacing) DIFS DIFS DIFS PIFS: PCF IFS = SIFS + slot time IFS: DCF IFS = SIFS + 2*slot time DIFS: DCF IFS = SIFS + 2*slot time medium busy SIFS contention next frame Slot time time

- Exponential Back-off
 - Random back-off time within a contention window [0, CW]
 - Contention window size increases with retransmission
 - Back-off time = random() * slot time
 - Random() = a pseudo random integer in [0,CW]
 - CWmin <= CW <= CWmax, CW starts with CWmin and increases by every retransmission up to CWmax, and is reset to Cwmin after successful transmission

DCF

(Distributed Coordination Function)

- Listen before-talk scheme based on the CSMA
- Stations transmits when medium is free for time greater than a DIFS period
- Random backoff is issued when medium busy

All backoff slots occur after a DIFS

Congestion Avoidance: Example

B1 and B2 are backoff intervals at nodes 1 and 2

cw = 31

Backoff Interval

- The time spent counting down backoff intervals is a part of MAC overhead
 - □ large CW \rightarrow large overhead
 - □ however, small CW → may lead to many collisions (when two nodes count down to 0 simultaneously)
- Since the number of nodes attempting to transmit simultaneously may change with time, we need some mechanism to manage contention
- IEEE 802.11: contention window CW is adapted dynamically depending on collision occurrence
 - □ after each collision, CW is doubled

Overview of IEEE 802.11 DCF

Backoff procedure—BEB algorithm

Discrete Time Model

- Discrete and integer time scale
- At beginning of a slot time, backoff time counter decrements or regenerated
- [t, t+1], interval between 2 consecutive slot time, can be variable length

