EC 553 Communication Networks

Mohamed Essam Khedr

Department of Electronics and Communications

IEEE 802.11 WLAN

Syllabus

Tentatively

Week 1	Overview
Week 2	Packet Switching
Week 3	Multiple Access I
Week 4	Multiple Access II
Week 5	Routing
Week 6	IP Networking
Week 7	IP Networking II
Week 8	ARP, ICMP
Week 9	Cellular Networks
Week 10	Wlan MAC
Week 11	Wlan Mac evaluation
Week 12	TCP, Congestion Control
Week 13	QoS I
Week 14	Qos II
Week 15	Application Layer

Wireless LANs

- Infrastructure based
 - Access points
 - Mobile hosts
- Connected to Internet
- Industrial standard
 - IEEE 802.11 protocols
 - De facto industrial standard
 - HiperLAN
 - European standard. Obsolete

Ad Hoc Networks

- Formed by wireless hosts which may be mobile
- Without (necessarily) using a pre-existing infrastructure
- Routes between nodes may potentially contain multiple hops

 No standards yet, many possible solutions

Ad hoc networks

- Collection of wireless mobile nodes dynamically forming a temporary network without the use of any existing network infrastructure or centralized administration.
- Hop-by-hop routing due to limited range of each node
- Nodes may enter and leave the network
- Very mobile whole network may travel
- No pre-existing infrastructure. Do-it-yourself infrastructure
- Coverage may be very uneven
- Usage scenarios:
 - Military
 - Disaster relief
 - Temporary groups of participants (conferences)

Issues in ad hoc networks

Routing performance

- Routes change over time due to node mobility
- Would like to avoid long delays when sending packets
- But would like to avoid lots of route maintenance overhead
- Want as many participating nodes as possible for greater aggregate throughput, shorter paths, and smaller chance of partition

Medium Access Control

- Admission control
- Collision avoidance
- Mobility
- QoS

Cotention-based Protocols

- Random assignment approaches
 - Dynamic number of transceivers contend for medium
 - Distributed (peer-to-peer) algorithms for contention
 - Great for dynamic / unplanned or distributed networks
 - Problem: Hidden and Exposed Terminal Problems

Hidden Terminal Problem

Senders A and C separated by obstacle. Each thinks the medium is free.

Senders A and C out of range of each other. Each thinks medium is free.

Exposed Terminal Problem

Contention-based Protocols -Examples

- CSMA Carrier Sense Multiple Access
 - Ethernet
 - Not enough for wireless (collision at receiver)

Hidden terminal: A is hidden from C's CS

- MACA Multiple Access w/ Collision Avoidance
 - RTS/CTS for hidden terminal problem
 - RTS/CTS/DATA

Contention-based Protocols -Examples

- MACAW improved over MACA
 RTS/CTS/DATA/ACK
 - Fast error recovery at link layer
- IEEE 802.11 Distributed Coordination Function (DCF)
 - Largely based on MACAW

Solution for Hidden Terminals

- A first sends a *Request-to-Send (RTS)* to B
- On receiving RTS, B responds Clear-to-Send (CTS)
- Hidden node C overhears CTS and keeps quiet
 - Transfer duration is included in both RTS and CTS
- Exposed node overhears a RTS but not the CTS
 D's transmission cannot interfere at B

802.11 – Reliability: ACKs

- □ When B receives DATA from A, B sends an ACK
- If A fails to receive an ACK, A retransmits the DATA
- Both C and D remain quiet until ACK (to prevent collision of ACK)
- Expected duration of transmission+ACK is included in RTS/CTS packets

IEEE 802.11 DCF

- Distributed coordinate function: ad hoc mode
 - Virtual and physical carrier sense (CS)
 - Network allocation vector (NAV), duration field
 - Binary exponential backoff
 - RTS/CTS/DATA/ACK or DATA/ACK for unicast packets
 - Broadcast packets are directly sent after CS
 - Fragmentation support
 - RTS/CTS reserve time for first (frag + ACK)
 - First (frag + ACK) reserve time for second...
 - Give up tx when error happens

IEEE 802.11 DCF (2)

- Carrier-sensing until channel idle for DIFS period
- If channel not idle, random backoff based on contention window
- If channel idle, RTS-CTS-DATA-ACK or DATA-ACK handshake
- If transmission unsuccessful, double contention window size

IEEE 802.11 DCF (2)

- Carrier-sensing until channel idle for DIFS period
- If channel not idle, random backoff based on contention window
- If channel idle, RTS-CTS-DATA-ACK or DATA-ACK handshake
- If transmission unsuccessful, double contention window size

IEEE 802.11 DCF (3)

Timing relationship

The 802.11 MAC Sublayer Protocol

PCF Superframe Timing

(b) PCF Superframe Construction

Congestion Avoidance: Example

B1 and B2 are backoff intervals at nodes 1 and 2

cw = 31

Backoff Interval

- The time spent counting down backoff intervals is a part of MAC overhead
 - □ large CW \rightarrow large overhead
 - □ however, small CW → may lead to many collisions (when two nodes count down to 0 simultaneously)
- Since the number of nodes attempting to transmit simultaneously may change with time, we need some mechanism to manage contention
- IEEE 802.11: contention window CW is adapted dynamically depending on collision occurrence
 after each collision, CW is doubled

Overview of IEEE 802.11 DCF

Backoff procedure—BEB algorithm

Discrete Time Model

- Discrete and integer time scale
- At beginning of a slot time, backoff time counter decrements or regenerated
- [t, t+1], interval between 2 consecutive slot time, can be variable length

