
1Lecture 7

Structured Programming

Dr. Mohamed Khedr
Lecture 7

http://webmail.aast.edu/~khedr

2Lecture 7

Program Control

- Standard C Statements

3Lecture 7

Outline
• This Topic Introduces

– selection structure
• if

• if/else

– repetition control structures
• While

– additional repetition control structures
• for

• do/while

– switch additional multiple selection structure
– break statement

• Used for exiting immediately and rapidly from certain control structures
– continue statement

• Used for skipping the remainder of the body of a repetition structure and
proceeding with the next iteration of the loop

4Lecture 7

Switch statement

� Used to select one of several alternatives
� BASED on the value of a single variable.
� This variable may be an int or a char but NOT a

float (or double).

5Lecture 7

switch statement

// multiple selection
switch (integral expression)
{
case constant integral expression1:

statements1 // expression1 matches
break;

case constant integral expression2:
statements2 // expression2 matches
break;

case constant integral expression3:
statements3 // expression3 matches
break;

default: // no expression matches
statements4
break;

}

6Lecture 7

Example
char grade ;
printf(“Enter your letter grade: “);
scanf(“%c”, &grade);
switch (grade)
{

case ‘A’ : printf(“ Excellent Job”);
break;

case ‘B’ : printf (“ Very Good “);
break;

case ‘C’ : printf(“ Not bad “);
break;

case ‘F’ : printf(“Failing”);
break;

default : printf(“ Wrong Input “);
}

7Lecture 7

Light bulbs

Write a program to ask the user for the brightness of
a light bulb (in Watts), and print out the expected
lifetime:

Brightness Lifetime in hours
25 2500
40, 60 1000
75, 100 750
otherwise 0

8Lecture 7

int bright ;
printf(“Enter the bulb brightness: “);
scanf(“%d”, &bright);
switch (bright)
{

case 25 : printf(“ Expected Lifetime is 2500 hours”);
break;

case 40 :
case 60 : printf (“Expected Lifetime is 1000 hours “);

break;
case 75 :
case 100 : printf(“Expected Lifetime is 750 hours “);

break;
default : printf(“Wrong Input “);

}

int bright ;
printf(“Enter the bulb brightness: “);
scanf(“%d”, &bright);
switch (bright)
{

case 25 : printf(“ Expected Lifetime is 2500 hours”);
break;

case 40 :
case 60 : printf (“Expected Lifetime is 1000 hours “);

break;
case 75 :
case 100 : printf(“Expected Lifetime is 750 hours “);

break;
default : printf(“Wrong Input “);

}

9Lecture 7

break vs return

• break means exit the switch statement and
continue on with the rest of the program.

• return means exit the whole program.
• They could both be used anywhere in the program.

10Lecture 7

Testing Selection Control Structures

• to test a program with branches, use
enough data sets so that every branch is
executed at least once

• this is called minimum complete coverage

11Lecture 7

Multiple-Selection Structure: switch
• switch

– Useful when a variable or expression is tested for all the values it can assume and
different actions are taken

• Format
– Series of case labels and an optional
default case
switch (value){

case '1':
actions

case '2':
actions

default:
actions

}
– break; exits from structure

• Flowchart of the switch structure

truecase 1

case 2

false

case n

…

case 1 break

false

false

true case 2 break

true case n break

action(s)

action(s)

action(s)

default

action(s)

12Lecture 7

1 /* Fig. 4.7: fig04_07.c
2 Counting letter grades */
3 #include <stdio.h>
4
5 int main()
6 {
7 int grade;
8 int aCount = 0, bCount = 0, cCount = 0, dCount = 0,
9 fCount = 0;
10
11 printf("Enter the letter grades.\n");
12 printf("Enter the EOF character to end input.\n");
13
14 while ((grade = getchar()) != EOF) {
15
16 switch (grade) { /* switch nested in while */
17
18 case 'A': case 'a': /* grade was uppercase A */
19 ++aCount; /* or lowercase a */
20 break;
21
22 case 'B': case 'b': /* grade was uppercase B */
23 ++bCount; /* or lowercase b */
24 break;
25
26 case 'C': case 'c': /* grade was uppercase C */
27 ++cCount; /* or lowercase c */
28 break;
29
30 case 'D': case 'd': /* grade was uppercase D */
31 ++dCount; /* or lowercase d */
32 break;
33
34 case 'F': case 'f': /* grade was uppercase F */
35 ++fCount; /* or lowercase f */
36 break;
37

1. Initialize variables

2. Input data
3. Use switch loop to

update count

13Lecture 7

38 case '\n': case' ': /* ignore these in input */
39 break;
40
41 default: /* catch all other characters */
42 printf("Incorrect letter grade entered.");
43 printf(" Enter a new grade.\n");
44 break;
45 }
46 }
47
48 printf("\nTotals for each letter grade are:\n");
49 printf("A: %d\n", aCount);
50 printf("B: %d\n", bCount);
51 printf("C: %d\n", cCount);
52 printf("D: %d\n", dCount);
53 printf("F: %d\n", fCount);
54
55 return 0;
56 }

4. Print results

Enter the letter grades.
Enter the EOF character to end input.
A
B
C
C
A
D
F
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
B

Totals for each letter grade are:
A: 3
B: 2
C: 3
D: 2
F: 1

Program Output:

14Lecture 7

The break and continue Statements
• break

– Causes immediate exit from a while, for, do/while or switch
structure

– Program execution continues with the first statement after the structure
– Common uses of the break statement

• Escape early from a loop
• Skip the remainder of a switch structure

• continue
– Skips the remaining statements in the body of a while, for or do/while

structure
• Proceeds with the next iteration of the loop

– while and do/while
• Loop-continuation test is evaluated immediately after the continue statement

is executed
– for

• Increment expression is executed, then the loop-continuation test is evaluated

15Lecture 7

while (expr) {

statement

…

continue;

statement

…

}

continue Statement

do {
statement

…
continue;
statement
…

} while(expr)

skip

skip

for (expr1; expr2; expr3) {
statement

…

continue;

statement

…

}

skip

16Lecture 7

while (expr) {
statement;
…
if (expr)
break;

statements;
}
statement;
…

break Statement
switch (i) {

case 1:
statement_1;

case 2:
statement_2;

case 3:
statement_3;
break;

case 4:
statement_4;

}
statements;

for (expr1; expr2; expr3)
{ statement

…
if (expr)

break;
statements;

}
statements;

17Lecture 7

Equality (==) vs. Assignment (=) Operators

• Dangerous error
– Does not ordinarily cause syntax errors
– Any expression that produces a value can be used in control structures
– Nonzero values are true, zero values are false

Example: using ==:
if (payCode == 4)

printf("You get a bonus!\n");

• Checks paycode, if it is 4 then a bonus is awarded
Example: replacing == with =:

if (payCode = 4)

printf("You get a bonus!\n");

• This sets paycode to 4
• 4 is nonzero, so expression is true, and bonus awarded no matter what the
paycode was

– Logic error, not a syntax error

18Lecture 7

Examples
Ex_1:

if (i=1) y = 3;

� y = 3 is always executed
this is not the same as

if (i==1) y = 3;

Ex_2:
if (i!=0) y=3;

� if (i) y=3;

Ex_3:
if (i==0) y=3;
���� if (!i) y=3;

19Lecture 7

Examples:
Ex_1:
if (i>2)

if (j==3)
y=4;

else
y=5;

Ex_2:

if (a>b)
c = a;

else
c = b;

� c=(a>b)?a:b

if (i>2) {
if (j==3)

y=4;
}
else

y=5;

if (x==5)
y = 1;

else
y = 0;

���� y = (x==5);

if (i>2)
if (j==3)

y=4;
else

;
else

y=5;

if (x<6)
y = 1;

else
y = 2;

� y = 2-(x<6);
� or y = 1+(x>=6);

≠ =

20Lecture 7

The Essentials of Repetition

• Loop
–Group of instructions computer executes repeatedly while some

condition remains true

• Counter-controlled repetition
–Definite repetition: know how many times loop will execute
–Control variable used to count repetitions

• Sentinel-controlled repetition
–Indefinite repetition
–Used when number of repetitions not known
–Sentinel value indicates "end of data“

21Lecture 7

Essentials of Counter-Controlled Repetition

• Counter-controlled repetition requires
– The name of a control variable (or loop counter)
– The initial value of the control variable
– A condition that tests for the final value of the control variable (i.e., whether looping

should continue)
– An increment (or decrement) by which the control variable is modified each time

through the loop
Example:

int counter = 1; /* initialization */
while (counter <= 10) { /* repetition condition */

printf("%d\n", counter);
++counter; /* increment */

}
– The statement

int counter = 1;
• Names counter
• Declares it to be an integer
• Reserves space for it in memory
• Sets it to an initial value of 1
• This is not an executable statement, it is a declaration.

22Lecture 7

Repetition Structure: while

1 /* Fig. 3.6: fig03_06.c
2 Class average program with
3 counter-controlled repetition */
4 #include <stdio.h>
5
6 int main()
7 {
8 int counter, grade, total, average;
9
10 /* initialization phase */
11 total = 0;
12 counter = 1;
13
14 /* processing phase */
15 while (counter <= 10) {
16 printf("Enter grade: ");
17 scanf("%d", &grade);
18 total = total + grade;
19 counter = counter + 1;
20 }
21 average = (float) total / counter;
22 /* termination phase */
24 printf("Class average is %d\n", average);
25
26 return 0; /* indicate program ended successfully */
27 }

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

Program Output:

printf("Enter grade, -1 to end: ");
scanf("%d", &grade);
while (grade != -1) {

total = total + grade;
counter = counter + 1;
printf("Enter grade, -1 to end: ");
scanf("%d", &grade);

} /* termination phase */
if (counter != 0) {

average = (float) total / counter;
printf("Class average is %.2f", average);

}
else

printf("No grades were entered\n");

23Lecture 7

4.4 The ������������ Repetition Statement

counter = 1

�������	
�	�
true

false

�������	�	�

���������

Establish initial
value of control
variable

Determine if final
value of control
variable has been
reached

Body of loop
(this may be many
statements)

Increment
the control
variable

�������	�����	�������	��

24Lecture 7

• for loops syntax
for (initialization ; loopContinuationTest ; increment)

statement
Example: Prints the integers from one to ten
for (counter = 1; counter <= 10; counter++)
printf("%d\n", counter);

• For loops can usually be rewritten as while loops:
initialization;
while (loopContinuationTest) {

statement;
increment;

}

• Initialization and increment
– Can be comma-separated list of statements

Example:
for (i = 0, j = 0; j + i <= 10; j++, i++)

printf("%d\n", j + i);

Repetition Structure: for

No semicolon
(;) after last
expression

25Lecture 7

The for Structure (cont.)

• Arithmetic expressions
– Initialization, loop-continuation, and increment can contain arithmetic

expressions. If x equals 2 and y equals 10
for (j = x; j <= 4 * x * y; j += y / x)

is equivalent to
for (j = 2; j <= 80; j += 5)

• Notes about the for structure:
– "Increment" may be negative (decrement)
– If the loop continuation condition is initially false

• The body of the for structure is not performed (i.e. pre-test)
• Control proceeds with the next statement after the for structure

– Control variable
• Often printed or used inside for body, but not necessarily

26Lecture 7

Sum is 2550

1 /* Fig. 4.5: fig04_05.c

2 Summation with for */

3 #include <stdio.h>

4

5 int main()

6 {

7 int sum = 0, number;

8

9 for (number = 2; number <= 100; number += 2)

10 sum += number;

11

12 printf("Sum is %d\n", sum);

13

14 return 0;

15 }

1. Initialize variables

2. for repetition structure

Program Output:

2 + 4 + 8 + … +100 = 2550

The for Structure (cont.)

27Lecture 7

• The do/while repetition structure
– Similar to the while structure
– do/while is a “post-test” condition. The body of the loop is performed at

least once.
• All actions are performed at least once

– Format:

do {

statement;
} while (condition);

Example: Prints the integers from 1 to 10.
(letting counter = 1):

do {

printf("%d ", counter);

} while (++counter <= 10);

• Flowchart of the do/while repetition structure

Repetition Structure: do/while

true
condition

action(s)

false

28Lecture 7

1 /* Fig. 4.9: fig04_09.c

2 Using the do/while repetition structure */

3 #include <stdio.h>

4

5 int main()

6 {

7 int counter = 1;

8

9 do {

10 printf("%d ", counter);

11 } while (++counter <= 10);

12

13 return 0;

14 }

1 2 3 4 5 6 7 8 9 10

1. Initialize variable
2. Loop

3. Print

Program Output:

Repetition StructureRepetition Structure: : do/whiledo/while

