
1Lecture 5

Structured Programming

Dr. Mohamed Khedr
Lecture 5

http://webmail.aast.edu/~khedr

2Lecture 5

Arithmetic Operators
Shortcut assignment

3Lecture 5

Prefix
operator

Arithmetic Operators
Prefix form

4Lecture 5

Arithmetic Operators
Postfix form

5Lecture 5

Assignment Operators
• Syntax:

var = expression;
– Assign the value of expression to variable (var)
Example:

int x, y, z;
x = 5;
y = 7;
z = x + y;

int x, y, z;
x = y = z = 0;

int x = y = z = 0;

int i, j;
float f, g;
i = f = 2.5;
g = j = 3.5;

���� i = 2; f = 2.5;

���� g = 3.0; j = 3;

���� Z = (x = 5) + (y = 7) much faster

���� same as x = (y = (z = 0));

���� wrong ! int x = 0, y = 0, z = 0;

6Lecture 5

Short Hand Assignment
• Syntax

f = f op g can be rewritten to be f op= g
such as: a = a + 2 ���� a += 2, a = a - 2 ���� a -= 2, a = a * 2 ���� a *= 2,

a = a / 2 ���� a /= 2, a = a % 2 ���� a %= 2, a = a << 2 ���� a <<= 2,

a = a & 2 ���� a &= 2, a = a | 2 ���� a |= 2, a = a ^ 2 ���� a ^= 2

� No blanks between op and =
� x *= y + 1 is actually x = x * (y+1) rather than x = x * y + 1

Example: q = q / (q+2) ���� q /= q+2

j = j << 2 ���� j <<= 2

� Advantage: help compiler to produce more efficient code
More complicated examples:
int a=1, b=2, c=3, x=4, y=5;

a += b += c *= x + y - 6;

printf(“%d %d %d %d\n”,a,b,c,x,y);

a += 5 + b += c += 2 + x + y;

a += 5 + (b+= c += 2 + x + y);

/* result is 12 11 9 4 5 */

/* wrong */
/* result is 22 16 14 4 5 */

7Lecture 5

Increment / Decrement Operators
++ (increment) -- (decrement)

• Prefix Operator
• Before the variable, such as ++n or –-n
• Increments or decrements the variable before using the variable

• Postfix Operator
• After the variable, such as n++ or n--
• Increments or decrements the variable after using the variable

� ++n
1. Increment n 2. Get value of n in expression

� --n
1. Decrement n 2. Get value of n in expression

� n++
1. Get value of n in expression 2. Increment n

� n--
1. Get value of n in expression 2. Decrement n

8Lecture 5

Increment / Decrement Operators (cont.)

– Simple cases
++i;

i++; (i = i + 1; or i += 1;)
--i;

i--; (i = i - 1; or i -= 1;)

Example:
i = 5;

i++; (or ++i;)

i = 5;

i--; (or --i;)
printf(“%d”, i)

���� 6

���� 4

9Lecture 5

– Complicated cases
i = 5; i j
j = 5 + ++i;

i = 5;
j = 5 + i++;

i = 5;
j = 5 + --i;

i = 5;
j = 5 + i--;

6 11

6 10

4 9

4 10

10Lecture 5

Increment / Decrement Operators (cont.)

• Invalid cases
++3 3++ --3 3--
++(x+y+z) (x+y+z)++ --(x+y+z)(x+y+z)--
++x++ --x-- ++x-- --x++

Note: Can not increment or decrement constant and expression

i ++j or i –-j (WRONG)
i + ++j i + –-j i - --j i - ++j (OK)

11Lecture 5

Other Input / Output
puts(line) Print a string to standard output and append a newline

Example: puts(“12345”);

putchar(c) Print a character to standard output
Example: putchar(‘A’);

gets(line) Read a string from standard input (until a newline is entered)
Example: char buf[128];

gets(buf); /* space is OK, and the ‘\n’ won’t be read in */
– Newline will be replaced by ‘\0’

getchar() Get a character from standard input
Example: int c;

c = getchar(); /* c must be int */

• In-memory Format Conversion
sprintf(string, control, variables);

12Lecture 5

Program Control

- Standard C Statements

13Lecture 5

Outline
• This Topic Introduces

– selection structure
• if

• if/else

– repetition control structures
• While

– additional repetition control structures
• for

• do/while

– switch additional multiple selection structure
– break statement

• Used for exiting immediately and rapidly from certain control structures
– continue statement

• Used for skipping the remainder of the body of a repetition structure and
proceeding with the next iteration of the loop

14Lecture 5

Selection Structure: if
• Selection structure:

– Used to choose among alternative courses of action
– Pseudocode:

If (student’s grade is greater than or equal to 60)
Print “Passed”

• If condition true
– Print statement executed and program goes on to next statement
– If false, print statement is ignored and the program goes onto the next

statement
– Indenting makes programs easier to read

• C ignores whitespace characters

• Pseudocode statement in C:
if (grade >= 60)

printf("Passed\n");
– C code corresponds closely to the pseudocode

15Lecture 5

The if Selection Structure (cont.)

• A decision can be made on any expression.
• zero - false

• nonzero - true

– Example:

(3 – 4) is true true

false

grade >= 60 print “Passed”

16Lecture 5

Selection Structure: if/else
• if/else

– if: only performs an action if the condition is true
– if/else: Specifies an action to be performed both when the

condition is true and when it is false

• Pseudocode:
If (student’s grade is greater than or equal to 60)

Print “Passed”
else

Print “Failed”

– Note spacing/indentation conventions

• C code:
if (grade >= 60)

printf("Passed\n");
else

printf("Failed\n");

17Lecture 5

The if/else Selection Structure

• Compound statement:
– Set of statements within a pair of braces
– Example:

if (grade >= 60)
printf("Passed.\n");

else {
printf("Failed.\n");
printf("You must take this course again.\n");

}

– Without the braces,
if (grade >= 60)

printf("Passed.\n");
else

printf("Failed.\n");
printf("You must take this course again.\n");

the statement
printf("You must take this course again.\n");

would be executed under every condition.

18Lecture 5

3.6 The ��������…���������������� Selection Statement

– Pseudocode for a nested ��…���� statement
If student’s grade is greater than or equal to 90

Print “A”
else

If student’s grade is greater than or equal to 80
Print “B”

else
If student’s grade is greater than or equal to 70

Print “C”
else

If student’s grade is greater than or equal to 60
Print “D”

else
Print “F”

19Lecture 5

The Essentials of Repetition

• Loop
–Group of instructions computer executes repeatedly while some

condition remains true

• Counter-controlled repetition
–Definite repetition: know how many times loop will execute
–Control variable used to count repetitions

• Sentinel-controlled repetition
–Indefinite repetition
–Used when number of repetitions not known
–Sentinel value indicates "end of data“

20Lecture 5

Essentials of Counter-Controlled Repetition

• Counter-controlled repetition requires
– The name of a control variable (or loop counter)
– The initial value of the control variable
– A condition that tests for the final value of the control variable (i.e., whether looping

should continue)
– An increment (or decrement) by which the control variable is modified each time

through the loop
Example:

int counter = 1; /* initialization */
while (counter <= 10) { /* repetition condition */

printf("%d\n", counter);
++counter; /* increment */

}
– The statement

int counter = 1;
• Names counter
• Declares it to be an integer
• Reserves space for it in memory
• Sets it to an initial value of 1
• This is not an executable statement, it is a declaration.

21Lecture 5

Repetition Structure: while

1 /* Fig. 3.6: fig03_06.c
2 Class average program with
3 counter-controlled repetition */
4 #include <stdio.h>
5
6 int main()
7 {
8 int counter, grade, total, average;
9
10 /* initialization phase */
11 total = 0;
12 counter = 1;
13
14 /* processing phase */
15 while (counter <= 10) {
16 printf("Enter grade: ");
17 scanf("%d", &grade);
18 total = total + grade;
19 counter = counter + 1;
20 }
21
22 /* termination phase */
24 printf("Class average is %d\n", average);
25
26 return 0; /* indicate program ended successfully */
27 }

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

Program Output:

printf("Enter grade, -1 to end: ");
scanf("%d", &grade);
while (grade != -1) {

total = total + grade;
counter = counter + 1;
printf("Enter grade, -1 to end: ");
scanf("%d", &grade);

} /* termination phase */
if (counter != 0) {

average = (float) total / counter;
printf("Class average is %.2f", average);

}
else

printf("No grades were entered\n");

22Lecture 5

• for loops syntax
for (initialization ; loopContinuationTest ; increment)

statement
Example: Prints the integers from one to ten
for (counter = 1; counter <= 10; counter++)
printf("%d\n", counter);

• For loops can usually be rewritten as while loops:
initialization;
while (loopContinuationTest) {

statement;
increment;

}

• Initialization and increment
– Can be comma-separated list of statements

Example:
for (i = 0, j = 0; j + i <= 10; j++, i++)

printf("%d\n", j + i);

Repetition Structure: for

No semicolon
(;) after last
expression

23Lecture 5

The for Structure (cont.)

• Arithmetic expressions
– Initialization, loop-continuation, and increment can contain arithmetic

expressions. If x equals 2 and y equals 10
for (j = x; j <= 4 * x * y; j += y / x)

is equivalent to
for (j = 2; j <= 80; j += 5)

• Notes about the for structure:
– "Increment" may be negative (decrement)
– If the loop continuation condition is initially false

• The body of the for structure is not performed (i.e. pre-test)
• Control proceeds with the next statement after the for structure

– Control variable
• Often printed or used inside for body, but not necessarily

24Lecture 5

Sum is 2550

1 /* Fig. 4.5: fig04_05.c

2 Summation with for */

3 #include <stdio.h>

4

5 int main()

6 {

7 int sum = 0, number;

8

9 for (number = 2; number <= 100; number += 2)

10 sum += number;

11

12 printf("Sum is %d\n", sum);

13

14 return 0;

15 }

1. Initialize variables

2. for repetition structure

Program Output:

2 + 4 + 8 + … +100 = 2550

The for Structure (cont.)

25Lecture 5

• The do/while repetition structure
– Similar to the while structure
– do/while is a “post-test” condition. The body of the loop is performed at

least once.
• All actions are performed at least once

– Format:

do {

statement;
} while (condition);

Example: Prints the integers from 1 to 10.
(letting counter = 1):

do {

printf("%d ", counter);

} while (++counter <= 10);

• Flowchart of the do/while repetition structure

Repetition Structure: do/while

true
condition

action(s)

false

26Lecture 5

1 /* Fig. 4.9: fig04_09.c

2 Using the do/while repetition structure */

3 #include <stdio.h>

4

5 int main()

6 {

7 int counter = 1;

8

9 do {

10 printf("%d ", counter);

11 } while (++counter <= 10);

12

13 return 0;

14 }

1 2 3 4 5 6 7 8 9 10

1. Initialize variable
2. Loop

3. Print

Program Output:

Repetition StructureRepetition Structure: : do/whiledo/while

27Lecture 5

Multiple-Selection Structure: switch
• switch

– Useful when a variable or expression is tested for all the values it can assume and
different actions are taken

• Format
– Series of case labels and an optional
default case
switch (value){

case '1':
actions

case '2':
actions

default:
actions

}
– break; exits from structure

• Flowchart of the switch structure

truecase 1

case 2

false

case n

…

case 1 break

false

false

true case 2 break

true case n break

action(s)

action(s)

action(s)

default

action(s)

28Lecture 5

1 /* Fig. 4.7: fig04_07.c
2 Counting letter grades */
3 #include <stdio.h>
4
5 int main()
6 {
7 int grade;
8 int aCount = 0, bCount = 0, cCount = 0, dCount = 0, 9
9 fCount = 0;
10
11 printf("Enter the letter grades.\n");
12 printf("Enter the EOF character to end input.\n");
13
14 while ((grade = getchar()) != EOF) {
15
16 switch (grade) { /* switch nested in while */
17
18 case 'A': case 'a': /* grade was uppercase A */
19 ++aCount; /* or lowercase a */
20 break;
21
22 case 'B': case 'b': /* grade was uppercase B */
23 ++bCount; /* or lowercase b */
24 break;
25
26 case 'C': case 'c': /* grade was uppercase C */
27 ++cCount; /* or lowercase c */
28 break;
29
30 case 'D': case 'd': /* grade was uppercase D */
31 ++dCount; /* or lowercase d */
32 break;
33
34 case 'F': case 'f': /* grade was uppercase F */
35 ++fCount; /* or lowercase f */
36 break;
37

1. Initialize variables

2. Input data
3. Use switch loop to

update count

29Lecture 5

38 case '\n': case' ': /* ignore these in input */
39 break;
40
41 default: /* catch all other characters */
42 printf("Incorrect letter grade entered.");
43 printf(" Enter a new grade.\n");
44 break;
45 }
46 }
47
48 printf("\nTotals for each letter grade are:\n");
49 printf("A: %d\n", aCount);
50 printf("B: %d\n", bCount);
51 printf("C: %d\n", cCount);
52 printf("D: %d\n", dCount);
53 printf("F: %d\n", fCount);
54
55 return 0;
56 }

4. Print results

Enter the letter grades.
Enter the EOF character to end input.
A
B
C
C
A
D
F
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
B

Totals for each letter grade are:
A: 3
B: 2
C: 3
D: 2
F: 1

Program Output:

30Lecture 5

The break and continue Statements
• break

– Causes immediate exit from a while, for, do/while or switch
structure

– Program execution continues with the first statement after the structure
– Common uses of the break statement

• Escape early from a loop
• Skip the remainder of a switch structure

• continue
– Skips the remaining statements in the body of a while, for or do/while

structure
• Proceeds with the next iteration of the loop

– while and do/while
• Loop-continuation test is evaluated immediately after the continue statement

is executed
– for

• Increment expression is executed, then the loop-continuation test is evaluated

31Lecture 5

while (expr) {

statement

…

continue;

statement

…

}

continue Statement

do {
statement

…
continue;
statement
…

} while(expr)

skip

skip

for (expr1; expr2; expr3) {
statement

…

continue;

statement

…

}

skip

32Lecture 5

while (expr) {
statement;
…
if (expr)
break;

statements;
}
statement;
…

break Statement
switch (i) {

case 1:
statement_1;

case 2:
statement_2;

case 3:
statement_3;
break;

case 4:
statement_4;

}
statements;

for (expr1; expr2; expr3)
{ statement

…
if (expr)

break;
statements;

}
statements;

33Lecture 5

Equality (==) vs. Assignment (=) Operators

• Dangerous error
– Does not ordinarily cause syntax errors
– Any expression that produces a value can be used in control structures
– Nonzero values are true, zero values are false

Example: using ==:
if (payCode == 4)

printf("You get a bonus!\n");

• Checks paycode, if it is 4 then a bonus is awarded
Example: replacing == with =:

if (payCode = 4)

printf("You get a bonus!\n");

• This sets paycode to 4
• 4 is nonzero, so expression is true, and bonus awarded no matter what the
paycode was

– Logic error, not a syntax error

34Lecture 5

Examples
Ex_1:

if (i=1) y = 3;

� y = 3 is always executed
this is not the same as

if (i==1) y = 3;

Ex_2:
if (i!=0) y=3;

� if (i) y=3;

Ex_3:
if (i==0) y=3;
���� if (!i) y=3;

35Lecture 5

Examples:
Ex_1:
if (i>2)

if (j==3)
y=4;

else
y=5;

Ex_2:

if (a>b)
c = a;

else
c = b;

� c=(a>b)?a:b

if (i>2) {
if (j==3)

y=4;
}
else

y=5;

if (x==5)
y = 1;

else
y = 0;

���� y = (x==5);

if (i>2)
if (j==3)

y=4;
else

;
else

y=5;

if (x<6)
y = 1;

else
y = 2;

� y = 2-(x<6);
� or y = 1+(x>=6);

≠ =

36Lecture 5

Examples:

• while loop:

while (expr1, expr2, …, exprn)

statement

Example:
while (scanf(“%d”, &i), i--)

printf(“%d”,i);

• Switch
switch (i) {

case 1: j+=5;
case 2;

case 3: j+=4;
case 4: j+=3;

}

1 2 3 N

N+1
≠≠≠≠ 0N+2 = 0

i = 1 i = 2 i = 3 i = 4

