Structured Programming

Dr. Mohamed Khedr
Lecture 2
http://webmail.aast.edu/~khedr

C Program structure
A Sample C Program

Preprocessor command to include
standard input/output information
s for your program.

#include <stdio.h> -]

_ [Function Header }
Global Declarations ~

int main (void) / .
{ Function Body
(Local Definitions)///

t
printf("Hello World!\n");

return 0;

} /* main */

Lecture 2

C Language Elements
The Function Header

type of returned value _ says no parameters
name 1f function /

Int main ()

A C program is a collection of one or more “functions” (parts)

There must be a function called main()

A function body has two parts declaration and executable statements.
Execution always begins with the first statement in function main()

Any other functions in the program are subprograms and are not executed until
they are called

printf(“ Hello, World “);

This statement means: Display the words Hello, World on the screen
return (0);

This statement STOPs the program and returns Zero to the O.S.

Lecture 2 3

o O A WN =

7
8
9
10
11

12 } /* end function main */

/* Fig. 2.1: fig02_01.c
A first program in C */
#include <stdio.h>

/* function main begins program execution */

int main(void)

/* and */ indicate comments — ignored by compiler O utl i ne

#include directive tells C to load a particular file

{ «

printf("welcome to C!\n"); <

return 0; /* indicate that program ended successfully */ «—

welcome to C!

Escape sequence Description

Left brace declares beginning of main function ’fl g02 O 1 C

Statement tells C to perform an action

return statement ends the function

Right brace declares end of main function

\n
\t
\a
\\
\"

Lecture 2

Newline. Position the cursor at the beginning of the next line.
Horizontal tab. Move the cursor to the next tab stop.

Alert. Sound the system bell.

Backslash. Insert a backslash character in a string.

Double quote. Insert a double-quote character in a string.

C Language Elements
Words

e Reserved Word
- A word that has special meaning in C
« Standard Identifiers

« A word having special meaning but one that a programmer
may redefine (but redefinition is not recommended)

 User Defined Identifiers

« An identifier must consist only of letters, digits, and
underscores.

* An identifier cannot begin with a digit
A Creserved word cannot be used as an identifier.

« An identifier defined in a C standard library should not be
redefined.

- Cis a case-sensitive language. The names Pressure, pressure,
and PRESSURE are viewed by the compiler as different
identifier.

Lecture 2 5

C Language Elements
Invalid/Valid identifiers

Invalid identifiers

1Letter begins with a number

double reserved word

int reserved word

TWO*FOUR character * not allowed

joe’s character ‘ not allowed

age# character # not allowed

Age-of-cat character — is not underscore character ()

Valid Identifiers

Age of person

taxRateY2k

PrintHeading

Lecture 2

C Language Elements
Words in the second example

 Reserved Word
* int
* void
 Double
e return

« Standard Identifiers
* Printf
- scanf

 User Defined ldentifiers
- KMS PER MILE
 miles
« kms

Lecture 2

auto double nt
break else Tong
case enum register
char extern return
const float short
continue for signed
default goto s1zeof
do 1f static

struct
switch
typedef
union
unsigned
void
volatile
while

Fig. 2.15 | C’s keywords.

Lecture 2

Standard Data Type in C

 Integral Types
+ represent whole numbers and their negatives
- declared as int, short, or long
* Int sample values 4578, -4578,0

* Floating Types
« represent real numbers with a decimal point
* declared as float, or double
 Float sample values 95.274 95.0 0.265

« Character Types
* represent single characters
- declared as char
« Char sample values B d4 ? *

Lecture 2

What about words and sentences ?

- a String is a sequence of characters enclosed
in double quotes

sample values
“Hello” “Year 2004 *“1234”

 Not in Standard C, We’ll cover it later

Lecture 2

10

Variables

int x, y, z;

Variables declared at beginning of a function

Before any executable statements

Number of bytes for each data type
char =1 (-128 to 127)
short =2 (-32768 to 32767)
int & long =4 (-2,147,483,648 to +2,147,483,647)
float =4 (£ ~10% to ~1038)
double = 8 (£ ~10323 to ~10308)

Lecture 2

11

Variable Names

e Restrictions
— Made up of letters & digits
— 18t character must be a letter

— Underscore (“_"") counts as a letter
e Often used 1n library routines

— Case sensitive
APPLE & apple are different variables

— Less than 31 characters

(X

— Cannot use reserved keywords
auto, break, case, ..., void, volatile, while

Lecture 2

12

Variable Declaration in C

 Variable

A name associated with a memory cell whose value
can change.

 Variable Declaration

Statements that communicate to the compiler the
names of variables in the program and the type of
information stored in each variable.

Lecture 2 13

Giving a Value to a Variable

You can assign (give) a value to a variable by using
the assignment operator =
VARIABLE DECLARATIONS

char code;

int I;

long national_debt;
float payRate;
double pi;

VALID ASSIGNMENT STATEMENTS

code = ‘B’;

| = 14;

national _debt = 10000000;
pay rate = 14.25;

pi = 3.1415926536;

Lecture 2

14

2.

Arithmetic Operators

()

Parenthesis (highest precedence)

* 1, 90

Multiplication, division, modulus
Evaluated left to right

+, -
Addition and subtraction
Evaluated left to right

Lecture 2

15

Arithmetic Operators

Integer division produces an integer result
1 /2 evaluates to O (no rounding up!)
19 / 5 evaluates to 3 (no rounding up!)

Modulus (%) = remainder after division

1 % 2 evaluates to 1
17 % 5 evaluates to 2

Implicit conversion — if an operation has operands
of different types, the “narrower” one will be
converted to the “wider” one

2.0/ 5 evaluates to 0.4 (a float)

Lecture 2

16

Equality, Relational Operators

Equality operators
— == (equal) — common error: = instead of ==
— !=(not equal)
Relational operators
— > (greater than)
— < (less than)

— >=(greater than or equal)

— <= (less than or equal)

Will return a O (false) or 1(true)

Lecture 2 17

if Control Structure

e A program can make a decision using the if control structure
and the equality or relational operators

#include <stdio.h>

int main (void)

{
if(1 > 2) printf("%d > %d\n",1,2);
if (1 <= 2) printf("%d <= %d\n",1,2);
return O;

Lecture 2 18

Input in C

#include <stdio.h>

int main (void) {
int x = 0;
printf ("Enter an integer: ");
scanf ("sd", &x);
printf ("The integer is %d\n", x);
return O;

Lecture 2

19

scanf Function

scanf ("%$d", &x);

— First argument: format control string
e Indicates type of data to be entered
— Second argument: location in memory

e Use an ampersand (&) to give the address where the variable is
stored

— The computer will wait for the user to enter a value & push the
enter key

Lecture 2 20

printf/scanf function

Printf (Output Function)

The printf function displays the value of its format string after
substituting in left-to-right order the values of the expressions in
the print list for their list for their placeholders in the format string
and after replacing escape sequences such as \n by their
meanings.

Scanf (Input Function)

The scanf function copies into memory data entered during the
program execution.

The order of the placeholders must correspond to the order of the
variables in the input list.

The data must be entered in the same order in the input list.

You should insert one or more blank characters or carriage
returns between numeric items.

Lecture 2

21

Output Function

SYNTAX

printf(format string , print list) ;
Printf(format string);

Examples : Place holder

~

~

printf(“That equals %f kilometers. \n”, kms);
printf(“enter the distance in miles> *);
printf(“Hello, World?\n®);

N

Escape sequence

Lecture 2

22

Output Function

printf (format string, data list);

"% d\n%d"

* A

printf ("%m‘i

Tl B [

Output stream

Lecture 2 23

Input Function

SYNTAX

scanf(format string , input list) ;

Examples :
Place holder

/

«~
scanf(“%If”, &miles);

N

Ampersand

Lecture 2 24

Input Function

scanf(format string, address list);

"%d% "

scanf("%d% ", &i, &x);

.. 1873 ... _ :

Input stream

7.

3

Lecture 2

25

Place Holders

A placeholder is a symbol beginning with
% in a format string that indicates where

to display the output value

Placeholder Variable type |Function use

%C char Printf/scanf
%d int Printf/scanf
%f double printf

%l f double scanf

Lecture 2

Example for Another C Program

* Converts distance from gniles to kilometers

. Write a . ~Commens
program to /i’ﬁilﬂ”ﬁ%}“& MILE 1609 1 iotvendos costaat s
Convert given T

Preprocessor directive Constant
I I Resesved word
distance in "
" main{void)
miles to ; Y

kilometers. e Ay

{* distance in miles*/
/* equivelant distance in kilom eters */

4 Comuient
/* get the distance in miles */

Standard identifier
printf(“enter the distance in miles= "});
scanf(“%lf”, &miles);

/* convert the distance to kilom eters */

kms = PER MILE,* miles;

Special symbol
/* display the distance in kilometers */
printf{“ That equals %of lilometers. 'n”, lan s);

retui[L[Ql;\ \%ﬂmmlt.‘m'ﬂn
Reserved word

} A— Specinl symbol
Lecture 2

C Language Elements
Preprocessor Directives

Examples
#define KMS PER_MILE 1.609
define AT ‘@’

define VOTING_AGE 18

— Define is a preprocessor directive.
— Valid constant declarations

— A named constant is a location in memory that we can refer
to by a hame, and in which a data value that cannot be
changed is stored.

— This directives instructs the processor to replace each
occurrence of KMS_PER_MILE in the text of the C program
by 1.609 before compilation begins.

Lecture 2 28

1 /* Fig. 2.5: fig02_05.c

2 Addition program */ =

3 #include <stdio.h> OUtllne
4

5 /* function main begins program execution */

6 1int main(void)

7 fig02_05.c
8 int integerl; /* first number to be input by user */ —o

9 int integer2; /* second number to be input by user */ < Definitions of variables

10 int sum; /* variable in which sum will be stored */ «——

11

12 printf("Enter first integer\n"); /* prompt */ scanf Obtams. avaolue from the

13 scanf("%d", &integerl); /* read an integer */‘/ user and assigns it to integerl
14

15 printf("Enter second integer\n"); /* prompt */)

16 scanf("%d", &integer2); /* read an integer *, «— scanf obtains a value from the

17 user and assigns it to integer2
18 sum = integerl + integer2; /* assign total to sum */

19 _ _ _ T Assigns a value to sum

20 printf("Sum is %d\n", sum); /* print sum */

21

22 return 0; /* indicate that program ended successfully */

23

24 } /* end function main */

Enter first integer

45

Enter second integer
72

Sum is 117

Lecture 2 29

Operator(s) Operation(s) Order of evaluation (precedence)

C) Parentheses Evaluated first. If the parentheses are
nested, the expression in the innermost pair is
evaluated first. If there are several pairs of
parentheses “on the same level” (i.e., not nested),
they are evaluated left to right.

Multiplication Evaluated second. If there are several, they are
/ Division evaluated left to right.
% Remainder
+ Addition Evaluated last. If there are several, they are
- Subtraction evaluated left to right.

Fig. 2.10 | Precedence of arithmetic operators.

Lecture 2 30

Fig. 2.12 | Equality and relational operators.

Standard algebraic C equality or

equality operator or relational
relational operator operator

Example of

C condition Meaning of C condition

Equality operators

+

Relational operators

>

Y

[N

== X ==Y X is equal to y

I= X I=vy X is not equal to y

> X >y X is greater than y

< X <Yy X is less than y

>= X >=Y X is greater than or equal to y
<= X <=Y X is less than or equal to y

Lecture 2 31

:SLOCO\IO?U'Ith—l

N NDNDNDNDNMDDNMDDMDDMDNDN = = =@ o ad e oo
0O NO G B WN - O O 0o NO” GG B wwDbd

/* Fig. 2.13: fig02_13.c

Using if statements, relational
operators, and equality operators */

#include <stdio.h>

/* function main begins program execution */
int main(void)

{

int numl; /* first number to be read from user */
int num2; /* second number to be read from user */

printf("Enter two integers, and I will tell you\n");
printf("the relationships they satisfy: ");

scanf("%d%d", &numl, &num2); /* read two integers */

Checks if numl is equal to num2

if (numl == num2) {*
printf("%d is equal to %d\n", numl, num2);
} /* end if */

Checks if num1 is not equal to num2

if (numl != num2) {*

printf("%d is not equal to %d\n", numl, num2);
} /* end if */

Checks if numl is less than num2

if (numl < num2) {*
printf("%d is less than %d\n", numl, num2);
} /* end if */

Lecture 2

32

29 if (numl > num2) {

30 printf("%d is greater than %d\n", numl, num2);

31} /* end if ¥/ Checks if numl is greater than num?2
22 if ¢ numl <= num2) {< Checks if num1l is less than or equal to num2
34 printf("%d is less than or equal to %d\n", numl, num2);

35 } /* end if */

36) .

37 if C numl >= num2) {<+—— Checks if numl is greater than equal to num2
38 printf("%d is greater than or equal to %d\n", numl, num2);

39 } /* end if */

40

41 return 0; /* indicate that program ended successfully */

42

43 } /* end function main */
43 } /* end function main */

Enter two integers, and I will tell you
the relationships they satisfy: 3 7
3 is not equal to 7
3 is less than 7
(continued from previous slide...)

Enter two integers, and I will tell you
the relationships they satisfy:

22 is not equal to 12

22 is greater than 12

22 is greater than or equal to 12

Enter two integers, and I will tell you
the relationships they satisfy:

7 is equal to 7

7 is less than or equal to 7

7 is greater than or equal to 7 13

Conversion specifier Description

d Display as a signed decimal integer.

1 Display as a signed decimal integer. [Note: The 1 and d specifiers
are different when used with scanf.]

0] Display as an unsigned octal integer.

u Display as an unsigned decimal integer.

X or X Display as an unsigned hexadecimal integer. X causes the digits

0-9 and the letters A-F to be displayed and X causes the digits
0-9 and a-f to be displayed.

hor 1 (letter 1) Place before any integer conversion specifier to indicate that a
short or Tong integer is displayed, respectively. Letters h and 1
are more precisely called length modifiers.

Conversion specifier Description

eorE Display a floating-point value in exponential notation.
f Display floating-point values in fixed-point notation.
gorG Display a floating-point value in either the floating-point

form f or the exponential form e (or E), based on the
magnitude of the value.

L Place before any floating-point conversion specifier to
indicate that a 1Tong doub1e floating-point value is
displayed.

L/aoviulvy o 34

Printing Strings and Characters

Prints char argument
Cannot be used to print the first character of a string

Requires a pointer to char as an argument
Prints characters until NULL ('\0') encountered
Cannot print a char argument

Remember
Single quotes for character constants ('z")

%

Double quotes for strings "z" (which actually contains two characters, 'z"' and '\0")

Displays pointer value (address)

Stores number of characters already output by current printf statement
Takes a pointer to an integer as an argument

Nothing printed by a %n specification

Every printf call returns a value

Number of characters output
Negative number if error occurs

Prints a percent sign

%26

Lecture 2

35

22
23
24

#include <stdio.h>

int main(void)

{

int *ptr; /* define pointer to int */

int x = 12345; /* initialize int x */

int y; /* define int y */

ptr = &x; /* assign address of x to ptr */

printf("The value of ptr is %p\n", ptr); . — p specifies a memory address will be printed

printf("The address of x is %p\n\n", &x);

printf("Total characters printed on this Tine:%n", &y);

printf(" %d\n\n", y);

n stores the number of characters printed on a line

y = printf("This 1line has 28 characters\n%n");
printf("%d characters were printed\n\n", y);

printf("Printing a %% in a format control string\n");

return 0; /* indicates successful termination */

25 } /* end main */

% prints a percent sign

The value of ptr is 0012FF78
The address of x is 0012FF78

Total characters printed on this Tline: 38

This Tine has 28 characters
28 characters were printed

Printing a % in a format control string

36

9.8 Printing with Field Widths and Precision

e Field width

— Size of field in which data is printed
— If width larger than data, default right justified

e [f field width too small, increases to fit data

e Minus sign uses one character position in field
— Integer width inserted between % and conversion specifier
- %4d — field width of 4

Lecture 2

37

{

© 0O N O B WOWODN =

—_ =l e ek
H W N = O

—_ =l e =
© 00 N O O

20

printf(
printf(
printf(
printf(
printf(

printf(
printf(
printf(
printf(
printf(

/* Fig 9.8: fig09_08.c */
/* Printing integers right-justified */
#include <stdio.h>

int main(void)

"%4d\n", 1);

"%4d\n", 12); ‘////////
"%4d\n", 123);

A field width of 4 will make C attempt to
print the number in a 4-character space

"%4d\n", 1234);
"%4d\n\n", 12345);

"%4d\n", -1);4

"%4d\n", -12);
"%4d\n", -123);
"%4d\n", -1234);
"%4d\n", -12345);

Note that C considers the minus sign a character

return 0; /* indicates successful termination */

21 } /* end main */

1

12

123

1234
12345

-1

-12

-123
-1234

-12345

38

9.8 Printing with Field Widths and Precision

e Precision

— Meaning varies depending on data type
— Integers (default 1)

e Minimum number of digits to print
— If data too small, prefixed with zeros
— Floating point
e Number of digits to appear after decimal (e and f)
— For g — maximum number of significant digits
— Strings
e Maximum number of characters to be written from string
— Format

e Use a dot (.) then precision number after %
%.3f

Lecture 2

39

© 0O N O O A WO N =

G e G Gy
o O A W NN = O

/* Fig 9.9: fig09_09.c */

/* Using precision while printing integers,
floating-point numbers, and strings */

#include <stdio.h>

int main(void)

{
int i = 873; /* initialize int i */
double f = 123.94536; /* initialize double f */
char s[] = "Happy Birthday"; /* initialize char array s */
rintf("Usin recision for integers\n");
P . ¢ . 9P I J L Precision for integers specifies the minimum
printf("\t%.4d\n\t%.9d\n\n", i, i); <)
number of characters to be printed
printf("Using precision for floating-point numbers\n");
printf("\t%.3f\n\t%.3e\n\t%.3g\n\n", f, f, f);

A

Precision for the g specifier controls the
maximum number of significant digits printed

Precision for £ and e specifiers controls the
number of digits after the decimal point

Lecture 2

40

17

18 printf("Using precision for strings\n");

19 printf("\t%.11ls\n", s);4—————______________________

20 Precision for strings specifies the maximum
21 return 0; /* indicates successful termination */ number of characters to be printed

22

23 } /* end main */

Using precision for integers
0873
000000873

Using precision for floating-point numbers
123.945
1.239e+002
124

Using precision for strings
Happy Birth

Lecture 2 41

Escape sequence Description

\' (single quote) Output the single quote () character.

\" (double quote) Output the double quote (") character.

\? (question mark) Output the question mark (?) character.

\\ (backslash) Output the backslash (\) character.

\a (alert or bell) Cause an audible (bell) or visual alert.

\b (backspace) Move the cursor back one position on the current line.
\f (new page or form feed) ~ Move the cursor to the start of the next logical page.
\n (newline) Move the cursor to the beginning of the next line.
\r (carriage return) Move the cursor to the beginning of the current line.
\t (horizontal tab) Move the cursor to the next horizontal tab position.
\V (vertical tab) Move the cursor to the next vertical tab position.

Fig. 9.16 | Escape sequences.

Lecture 2

© 00 N O O b WOWDN =

NN = = o el e oed ek ek omd b
- O ©W 0O N O Ol & WM = O

22
23

/* Fig 9.18: fig09_18.c */
/* Reading integers */
#include <stdio.h>

int main(void)

{ _ d specifies a decimal integer will be input
::: E i specifies an integer will be input
::: ; o specifies an octal integer will be input
::: i u specifies an unsigned decimal integer will be input
int g;

printf("Enter seyed i

x specifies a hexadecimal integer will be input

egers: ");

scanf("%d%1%i%i%0%u%x", &, &b, &, &4, &e, &f, &g);

printf("The input displayed as decimal integers is:\n");

printf("%d %d %d %d %d

%d %d\n", a, b, ¢, d, e, f, g);

return 0; /* indicates successful termination */

} /* end main */

Enter seven integers: -70 -70 070 0x70 70 70 70
The input displayed as decimal integers is:
-70 -70 56 112 56 70 112

Lecture 2

43

1 /* Fig 9.19: fig09_19.c */

2 /* Reading floating-point numbers */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 1int main(void)

7 { e, £, and g specify a floating-point number will be input
8 double a;

X EUSLE Lo 1 specifies a double or long double will be input
10 double c;

11

12 printf("gnhter three floating-point numbers: \n");

13 scanf("%le%1f%1g", &a, &b, &c);

14

15 printf("Here are the numbers entered in plain\n");

16 printf("floating-point notation:\n");

17 printf("%f\n%f\n%f\n", a, b, c);

18

19 return 0; /* indicates successful termination */

20

21 } /* end main */

Enter three floating-point numbers:
1.27987 1.27987e+03 3.38476e-06

Here are the numbers entered in plain
floating-point notation:

1.279870

1279.870000

0.000003

Lecture 2

© 0O N O O b WON =

G | U G
N o o O = O

18

/* Fig 9.20: fig09_20.c */
/* Reading characters and strings */
#include <stdio.h>

int main(void)

{

char x;
char y[9]
printf("gn

c specifies a character will be input

; s specifies a string will be input
§g4/;/string: ")

scanf("%c%s", &, y);

printf("Th
printf("th
printf("an

e input was:\n");
e character \"%c\" ", x);
d the string \"%s\"\n", y);

return 0; /* indicates successful termination */

19 } /* end main */

Enter a string: Sunday
The input was:
the character "S" and the string "unday"

Lecture 2

45

1 /* Fig 9.21: fig09_21.c */

2 /* Using a scan set */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 1int main(void)

7 {

e char z[9 I; /* define array z */ [1 specifies only the initial segment of a string that
? _ contains the characters in brackets will be read
10 printf("Enter s

11 scanf("%[aeioul", z); /* search for set of characters */

12

13 printf("The input was \"%s\"\n", z);

14

15 return 0; /* indicates successful termination */

16

17 } /* end main */

Enter string: ooeeooahah
The input was "ooeeooa"

Lecture 2

46

1 /* Fig 9.22: fig09_22.c */

2 /* Using an inverted scan set */

3 #include <stdio.h>

4

5 1int main(void)

6 {

7 char z[9 1];

8

9 printf("Enter a string: ");

10 scanf("%[Aaeioul"”, z); /* inverted scan set */

:; orintfC "The :m [1 and # specify only the initial segment of a string that
13 does not contain the characters in brackets will be read
14 return 0; /* indicates successful termination */

15

16 } /* end main */

é Enter a string: String
- The input was "str"

Lecture 2 47

1 /* Fig 9.23: fig09_23.c */

2 /* 1dinputting data with a field width */

3 #include <stdio.h>

4

5 1dnt main(void)

6 { A field width of 2 tells C to only read
7 int x; the first 2 characters of that input
8 int y;

9

10 printf("BAter a six digit integer: ");

11 scanf("%2d%d", &x, &y);

12

13 printf("The integers input were %d and %d\n", x, y);
14

15 return 0; /* indicates successful termination */

16

17 } /* end main */

Enter a six digit integer: 123456
The integers input were 12 and 3456

Lecture 2

48

1 /* Fig 9.24: fig09_24.c */

2 /* Reading and discarding characters from the input stream */

3 #include <stdio.h>

4

5 1int main(void)

6 {

7 int monthl;

8 int dayl; * is a wildcard—scan£ will disregard anything
9 int yearl; between the two inputs on either side of it
10 int month2;

11 int day2;

12 int year2;

13

14 printf("Enter a date in the form mm-dd-yyyy: ");

15 scanf("%d%*c%d%*c%d", &monthl, &dayl, &yearl);

16

17 printf("month = %d day = %d vyear = %d\n\n", monthl, dayl, yearl);
18

19 printf("Enter a date in the form mm/dd/yyyy: ");

20 scanf("%d%*ckd%*c%d", &month2, &day2, &year2);

21

22 printf("month = %d day = %d vyear = %d\n", month2, day2, year2);
23

24 return 0; /* indicates successful termination */

25

e
Enter a date in the form mm-dd-yyyy: 11-18-2003
month = 11 day = 18 year = 2003

Enter a date in the form mm/dd/yyyy: 11/18/2003
month = 11 day = 18 year = 2003

Lecture 2

