
1Software Techniques Lecture 1

Outline
1. Course Information
2. Overview of C Programming
3. My first program : Hello, World!

Structured Programming

Mohamed Khedr
Lecture 1

2Software Techniques Lecture 1

Course Outline

• An introduction to computer programming
• Problem solving skills and software development

methods
• Data types, operators and simple functions
• Selection structure (IF and Switch statements)
• Repetition and loop statements
• Function & modular programming
• Arrays & applications
• Multidimensional arrays

3Software Techniques Lecture 1

Lecture One Outline

• Overview of Computer, Programming and
Problem Solving

• What is Programming?

• Programming Life-Cycle Phases

• Algorithm Basic Control Structures

• Sample problem

4Software Techniques Lecture 1

• Device capable of performing computations and enacting
logical decisions

• Perform these tasks millions and even billions of times
faster than people can

• Computers process data through sets of instructions called
computer programs

• Programs guide the computer through actions as specified
by people called computer programmers; For this course,
that will be YOU.

Background
What is a Computer?

5Software Techniques Lecture 1

Background
Computer Components

6Software Techniques Lecture 1

What is Programming?

1. Find an algorithm to solve a problem.
2. Express that algorithm in a way that the

computer can execute it.

• Given a well-defined problem:

7Software Techniques Lecture 1

Programming Life Cycle Phases

1. Analyze the problem.
• This involves identifying the data you have to work with it,

the desired results, and any additional requirements or
constrains on the solution.

2. Design the algorithm to solve the problem.
• An algorithm is a step-by-step procedure for solving a problem in a

finite amount of time.

3. Implement the algorithm.
• Each algorithm is converted into one or more steps in a

programming language. This process is called CODING.

8Software Techniques Lecture 1

Programming Life Cycle Phases

4. Test and verify the completed program.
• Run the program several times using different sets of data, making sure

that it works correctly for every situation in the algorithm .

• if it does not work correctly, then you must find out what is
wrong with your program or algorithm and fix it--this is
called DEBUGGING

5. Maintain and update the program.
• maintenance begins when your program is put into use and accounts for

the majority of effort on most programs.

• MODIFY the program to meet changing requirements or
correct errors that show up in using it.

9Software Techniques Lecture 1

Algorithm Basic Control Structures

• a sequence is a series of statements that execute one after
another

• selection (branch) is used to execute different statements
depending on certain conditions

• Looping (repetition) is used to repeat statements while certain
conditions are met.

• a subprogram is used to break the program into smaller units

10Software Techniques Lecture 1

Statement Statement Statement . . .

Control Structures
Sequences

11Software Techniques Lecture 1

IF Condition THEN Statement1 ELSE Statement2

Statement1
Statement

Statement2

Condition . . .

True

False

Control structures
Selection (Branching)

12Software Techniques Lecture 1

Statement

Condition . . .False

True

WHILE Condition Statement1

Control structures
Loop (Repetition)

13Software Techniques Lecture 1

PROGRAM1 . . .

SUBPROGRAM1
a meaningful collection
of SEQUENCE,
SELECTION, LOOP,
SUBPROGRAM

Control structures
Subprogram (Function)

14Software Techniques Lecture 1

Programming Languages

Three types of programming languages
1. Machine languages

• Strings of numbers giving machine specific instructions
• Example:

�����������

������	���	

�����������

2. Assembly languages
• English-like abbreviations representing elementary computer

operations (translated via assemblers)
• Example:

��
����������

�

�����������

���������������

15Software Techniques Lecture 1

Programming Languages (2)

Three types of programming languages (continued)
3. High-level languages

• Codes similar to everyday English
• Use mathematical notations (translated via compilers)
• Example:

�������� ����� ��� ���! ��"# ���

16Software Techniques Lecture 1

Programming Languages (3)

��������	��
��
��

��������	��
��
��

��
��	�����	��
��
��

�����������

�����������

�����������

	�
��

���

!"�#$�%

%&
�

17Software Techniques Lecture 1

History of C

• C
– Evolved by Ritchie from two previous programming

languages, BCPL and B
– Used to develop UNIX
– Used to write modern operating systems
– Hardware independent (portable)
– By late 1970's C had evolved to "Traditional C"

• Standardization
– Many slight variations of C existed, and were incompatible
– Committee formed to create a "unambiguous, machine-

independent" definition
– Standard created in 1989, updated in 1999

18Software Techniques Lecture 1

The C Standard Library

• C programs consist of pieces/modules called
functions
– A programmer can create his own functions

• Advantage: the programmer knows exactly how it works
• Disadvantage: time consuming

– Programmers will often use the C library functions
• Use these as building blocks

– Avoid re-inventing the wheel
• If a premade function exists, generally best to use it rather than

write your own
• Library functions carefully written, efficient, and portable

19Software Techniques Lecture 1

Basics of a Typical C Program Development
Environment

• Phases of C Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

Program is created in
the editor and stored
on disk.
Preprocessor program
processes the code.

Loader puts program
in memory.

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

Compiler creates
object code and stores
it on disk.

Linker links the object
code with the libraries

Loader

Primary Memory

Compiler

Editor

Preprocessor

Linker

Primary Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

CPU

Disk

Disk

20Software Techniques Lecture 1

Creating Programs

����'('�)�'�*��� ����'(�+�����'(�

%�����,��

	��-

!'�,���.����

/��
��	�����	��
��
��0

��)��1�.����

/��������	��
��
��0
$+���1����

%'�*������2����-

$2�1

�2�1�����'(�

21Software Techniques Lecture 1

My First C Program: Hello World!

���������	
�����
�������

� �� � � � � � �� 	
� �
� � �

��
 ���� � �

�

����
�� � � � �
 !
�� � "� � � #

��
� �� �$ #

% �

22Software Techniques Lecture 1

Comments

/* My first C program */

– Comments are a way of explaining what a program does.
– They are put after // or between /* */.
– Comments are ignored by the compiler and are used by you

and other people to understand your code.
– You should always put a comment at the top of a program

that tells you what the program does because one day if you
come back and look at a program you might not be able to
understand what it does but the comment will tell you.

– You can also use comments in between your code to explain
a piece of code that is very complex.

– Here is an example of how to comment the Hello World
program:

23Software Techniques Lecture 1

Updated Comments
/* Author: Tim Ji

Date: 1/10/2005

Description: Writes the words "Hello World"
on the screen

*/

��������	
 � ���
 � �

��� � � ��� �

�

� � ��� � � � � ���� � � � ����� � � //prints "Hello World"
� �� �� �� � �

� �

24Software Techniques Lecture 1

Preprocessing

#include <stdio.h>

– This includes a file called stdio.h which lets us use certain
commands.

– stdio is short for Standard Input/Output which means it has
commands for input like reading from the keyboard and
output like printing things on the screen.

25Software Techniques Lecture 1

Program Entry Point

int main()

– int is what is called the return value which will be explained
later on in this course.

– main is the name of the point where the program starts and
the brackets are there for a reason that you will learn in the
future but they have to be there.

26Software Techniques Lecture 1

Blocks

{}

– The 2 curly brackets are used to group all the commands
together so it is known that the commands belong to main.

– These curly brackets are used very often in C to group things
together.

27Software Techniques Lecture 1

Functions

printf("Hello World\n");

– This is the printf command and it prints text on the screen.
– The data that is to be printed is put inside brackets. You will

also notice that the words are inside quotation marks because
they are what is called a string.

– Each letter is called a character and a series of characters
that is grouped together is called a string.

– Strings must always be put between quotation marks. The \n
is called an escape sequence and represents a newline
character and is used because when you press ENTER it
doesn't insert a new line character but instead takes you onto
the next line in the text editor.

– You have to put a semi-colon after every command to show
that it is the end of the command.

28Software Techniques Lecture 1

Return from Function

return 0;

– The int in int main() is short for integer which is another
word for number.

– We need to use the return command to return the value 0 to
the operating system to tell it that there were no errors while
the program was running.

– Notice that it is a command so it also has to have a semi-
colon after it.

29Software Techniques Lecture 1

Programming Style

• Indentation
– You will see that the printf and return commands have

been indented or moved away from the left side.
– This is used to make the code more readable.
– It seems like a stupid thing to do because it just wastes time

but when you start writing longer, more complex programs,
you will understand why indentation is needed.

30Software Techniques Lecture 1

Variables

int x, y, z;
• Variables declared at beginning of a function

– Before any executable statements

• Number of bytes for each data type
– char = 1 (-128 to 127)
– short = 2 (-32768 to 32767)
– int & long = 4 (-2,147,483,648 to +2,147,483,647)
– float = 4 (± ~10-44 to ~1038)
– double = 8 (± ~10-323 to ~10308)

• Also have unsigned char, short, int, etc.

31Software Techniques Lecture 1

Variable Names

• Restrictions
– Made up of letters & digits
– 1st character must be a letter
– Underscore (“_”) counts as a letter

• Often used in library routines
– Case sensitive

• APPLE & apple are different variables
– Less than 31 characters
– Cannot use reserved keywords

• auto, break, case, …, void, volatile, while

32Software Techniques Lecture 1

Arithmetic Operators

1. ()
• Parenthesis (highest precedence)

2. *, /, %
• Multiplication, division, modulus
• Evaluated left to right

3. +, -
• Addition and subtraction
• Evaluated left to right

33Software Techniques Lecture 1

Arithmetic Operators

• Integer division produces an integer result
– 1 / 2 evaluates to 0 (no rounding up!)
– 19 / 5 evaluates to 3 (no rounding up!)

• Modulus (%) = remainder after division
– 1 % 2 evaluates to 1
– 17 % 5 evaluates to 2

• Implicit conversion – if an operation has operands
of different types, the “narrower” one will be
converted to the “wider” one

– 2.0 / 5 evaluates to 0.4 (a float)

34Software Techniques Lecture 1

Equality, Relational Operators

• Equality operators
– == (equal) – common error: = instead of ==

– != (not equal)

• Relational operators
– > (greater than)
– < (less than)
– >= (greater than or equal)
– <= (less than or equal)

• Will return a 0 (false) or 1(true)

35Software Techniques Lecture 1

if Control Structure

• A program can make a decision using the if control structure
and the equality or relational operators

#include <stdio.h>
int main(void)
{

if(1 > 2) printf("%d > %d\n",1,2);
if(1 <= 2) printf("%d <= %d\n",1,2);
return 0;

}

36Software Techniques Lecture 1

Input in C

#include <stdio.h>

int main(void){
int x = 0;

printf("Enter an integer: ");
scanf("%d", &x);

printf("The integer is %d\n", x);
return 0;

}

37Software Techniques Lecture 1

scanf Function

• scanf("%d", &x);
– First argument: format control string

• Indicates type of data to be entered

– Second argument: location in memory
• Use an ampersand (&) to give the address where the variable is

stored

– The computer will wait for the user to enter a value & push the
enter key

38Software Techniques Lecture 1

Class Exercise 2

• Write a program that inputs two integers, adds them
together, and determines if the result is a multiple of
3 (evenly divisible by 3)

