Lecture 9
Arrays

C Programming

Lecture 9 Topics

Array definition
Array declaration
Array assignment
Array Input / Output
Examples

What is an Array?

It's a collection of variables (the same type)
grouped into one name.

More specifically, it's a group of memory
locations for variables of the same type and
specified by the same name.

It makes dealing with related variables much
easier.

Parts of Arrays

Elements

Refers to the number of individual
items represented by the array

IndeX (or more formally, Subscript)
Refers to one particular element in the array

The first position In an array is represented by
an index, or subscript of 0 (zero). For example,

arrStudentGrades[0]
The second position is referred to by
arrStudentGrades[1]

Arrays

An array is an ordered list of values

The entire array Each value has a nhumeric /ndex
has a single name

o 1 2 3 4 5 6 7 8 9

scores | 719 |87 194826798 |87 |81|74 |91

An array of size N is indexed from zero to N-1

This array holds 10 values that are indexed from 0 to 9

Arrays

A particular value in an array is referenced using
the array name followed by the index in brackets

For example, the expression
scores[2]
refers to the value 94 (the 3rd value in the array)

That expression represents a place to store a
single integer and can be used wherever an
integer variable can be used

Arrays

For example, an array element can be assigned
a value, printed, or used in a calculation:

scores|2] = 89;
scoreslfirst] = scoresffirst] + 2;
mean = (scores|0] + scores|[1])/2;

printf ("Top = %d”, scores[5]);

So how do we use arrays?

Same concepts as other variables apply

Must declare the array
Must initialize the array

Can use arrays in expressions and
setting elements’ values or using t

functions,
neir values,

similar to the use of ordinary varia

bles

Declaring an array

The declaration is is similar to the declaration
of other variables (except for the brackets
and number of elements):

int iMyFirstArray[15], iMySecondArray[20];

You can use a #define constant to set the
size of the array

#define GRID ROWS MAX 8
int arrGridRows|[GRID ROWS MAX | ;

Declaring Arrays

The scores array could be declared as
follows:

int scores[10] ;

The type of the variable scores is an array
of integers

The variable scores is set to a new blank
array that can hold 10 integers

Declaring Arrays

Some examples of array declarations:

double prices[500] ;
int factor[12] , age[6];

char codes[30] ;

Initializing an Array

You can initialize an array when you declare it,
as you do with other variables

Syntax is slightly different, as you are now
initializing more than one element at a time

One way at declaration, using /nitializers:
int iMyFirstArray[5]={0,0,0,0,0 };

Note the braces around the initial zeroes which
themselves are separated by commas

Initializing an Array
(cont’d)

If you specify fewer initializing values

than you have elements, all the rest are

initialized to a value of 0! For example:

int iMyFirstArray[5] = { 0 }; would set
all elements to 0

int iMyFirstArray[5 1 = { 4 }; would set
the zeroth element to 4 and the rest to 0!

Initializing an array
without specifying size

You can also initialize and set the number
of elements with the same step:

int iMyFirstArray[1={0,0,0,0,0 };
Note: there is NO size specified; C

automatically makes it 5 elements since
you gave five initial values

Initializer Lists
Examples:

int units[] = {147, 323, 89, 933, 540,
269, 97, 114, 298, 476):

char letterGrades[] = {'A’", 'B', 'C', 'D', 'F'};

Note that an initializer list can only be
used only in the array declaration

Initializing array with a for
loop

After declaring an array, you can initialize it in

the body of your program by using a for loop:
int 1 = 0, iMyFirstArray[5] ; /* size is 5%/

for (i =0 ; i <=4 ; i++)
{

iMyFirstArray[1] = 0 ;
} /* end for i */
Note the upper bound is 4, not 5! That is, you
loop through 0 to 4 to initialize an array with 5
elements

Bounds Checking

Once an array Is created, it has a fixed
Size

An index used in an array reference must
specify a valid element

That is, the index value must be in bounds
(0O to N-1)

Bounds Checking

For example, if the array codes can hold
100 values, it can be indexed using only
the numbers 0 to 99

If count has the value 100, then the
following reference will cause a problem:

for (int index=0; index <= 109; index++)
codes[index] = index*50 + epsilon;

Array Input/ Output

We typically use for loops for any kind of
array processing.

To input an array, one by one:

for (i=0; i<10 ; i++)
{
printf (" Enter element %d : %, 1);

scanf (“ %d “, &scores|[i]);

Array Output

To display an array, one element per line:

for (i=0; i<10 ; i++)
{

printf (“ scores [%d] : %d\n“, i ,
scores[i]);

}

#define SIZE 10

iInt main()

{

int myFirstArray[SIZE], i;

for (i1=0; i<=SIZE-1; I++)

{
myFirstArray[i] =1~ 2;
printf("myFirstArray with subscript of %d holds the
value %d\n", i, myFirstArrayli]);
]

return O;

Two-Dimensional Arrays

A one-dimensional array stores a list of elements

A two-dimensional array can be thought of as a table
of elements, with rows and columns

one two
dimensio dimension=-

int table[2][3]={0,0,0,1,1,1};
int table[2][3]={{0,0,0},{1,1,1}}

Parallel Arrays

These are independent arrays of the same
size, that have a meaningful connection to
each other.

For example, one array with a students
gpa, and one with his letter grade.

GPA grade I

(O]
o0

Example

Write a program that reads in an array of
10 elements, gets their average, and then
display the deviation of each element
from that average.

Example

Write a program that reads in an array of
10 integers (range 0 - 50, strict) and then
draws a bar chart of the values:

1 O *kkkkkkkkk*k
5 *k*kk*k

1 5 kkkkkkkkkkkkkkk

