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Syllabus

O Tentatively

Week 1

Overview, Probabilities, Random variables, Random
process

Week 2 Wireless channels, Statistical Channel modelling, Path loss
models

Week 3 Cellular concept and system design fundamentals

Week 4 Modulation techniques, single and multi-carrier

Week 5 Diversity techniques

Week 6 Equalization techniques

Week 7 Mid Term exam

Week 8 802.11 and Mac evaluation

Week 9 Energy models in 802.11

Week 10 Wimax and Mac layer

Week 11 Presentations

Week 12 Presentations

Week 13 Presentations

Week 14 Presentations

Week 15 Final Exam
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Grades

Load Percentage Date

7" Week Exam 25% 24 April 2007
Final Exam 40%

Participation 10%

Presentation and 25% 10t week and up

Report
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O Roadmap

Presentation and Report

Week 4

Point Distribution

Week 8

Progress report 5%

Week 13

Presentation starts 10%

Week 15

Report 10%
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Simplified View of a Digital Radio Link
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White Gaussian Noise,

WGNi(t) WGN

|
| “M«MM b

———

Rawen(t) Gwen()
i A
1 Ng/2
5(1).Ny'2
g >




Probability

Q Think of probability as modeling an experiment

Q Eg: tossing a coin!
A The set of all possible outcomes is the sample
space: S

a Classic “Experiment”:
Q Tossing adie: S=1{1,2,3,4,5,6}
0 Any subset A of S 1s an event:
QA = {the outcome is even} = {2,4,6}
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Probability of Events: Axioms

P is the Probability Mass function 1if 1t maps each
event A, into a real number P(A), and:

N P(A) =0 for every event Ac S

ii.) P(S)=1

111.)If A and B are mutually exclusive events then,

@ P(AU B) = P(A) + P(B)

AN B=¢
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Probability of Events

...In fact for any sequence of pair-wise-mutually-
exclusive events, we have

(i.,e. AA =0foranyi= )

AiﬁAJ.=¢, and UAi:S

i=1
B
ey
A A
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Approximations/Bounds: Union Bound

P(A U B) <=P(A) + P(B)
PAUA,U... Ay <=2_; PA)

O Applications:

O Getting bounds on BER (bit-error rates),
O In general, bounding the tails of prob. distributions

O We will use this in the analysis of error probabilities with various coding

schemes

10
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Approximations/Bounds: log(1+x)

alog,(1+x) = x for small x

Q Application: Shannon capacity w/ AWGN noise:
a Bits-per-Hz = C/B =log,(1+ )

Q If we can increase SNR (y) linearly when ¥ i1s small
(1.e. very poor, eg: cell-edge)...

Q... we get a linear increase in capacity.

0 When v 1s large, of course increase in Y gives only a
diminishing return in terms of capacity: log (1+ )
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Schwartz Inequality & Matched Filter

0 Inner Product (a™x) <= Product of Norms (i.e. lallxI)
O Projection length <= Product of Individual Lengths
Q This 1s the Schwartz Inequality!

O Equality happens when a and x are in the same direction (i.e. cos0 = 1,
when 0 = 0)

O Application: “matched” filter

O Received vectory = x + w (zero-mean AWGN)

O Note: w is infinite dimensional

Q Proj,ect y to the subspace formed by the finite set of transmitted symbols

X!y

O y’ is said to be a “sufficient statistic” for detection, i.e. reject the noise
dimensions outside the signal space.
This operation is called “matching” to the signal space (projecting)

Now, pick the x which is closest to y’ in distance (ML detection =
nearest neighbor)

U0
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Conditional Probability

: (conditional) probability that the
outcome is in A given that we know the
outcome in B

P(AB)

P(A|B)=~—L  P(B)#0

P(B)
Example: Toss one die.

P(i=3|iis odd)=
‘Note that: ZV-:EE

P(B| A)
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Independence

Q Events A and B are independent if P(AB) = P(A)P(B).

s NS P(A | B)= P(A) sl P(B | A) = P(B)

0 Example: A card 1s selected at random from an ordinary
deck of cards.

O A=event that the card is an ace.

O B=event that the card 1s a diamond.
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Random Variable as a Measurement

O Thus a random variable can be thought of as a
measurement (yielding a real number) on an experiment

0O Maps “events” to “real numbers”

0 We can then talk about the pdf, define the
mean/variance and other moments

X(s)

~eer T TN et Measurement Space
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Continuous Probability Density Function

O 1. Mathematical Formula
Frequency

a 2. Shows All Values, x, &
Frequencies, f(x) (Value, Frequency)

Q £(X) Is Not Probability

Q 3. Properties

[ f(x)dx =1
All. X" (Area Under Curve)

f(x)>0, a<x<b Value
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Cumulative Distribution Function

a The cumulative distribution function (CDF) for a random

variable X 1s

F,(x)=P(X<x)=P({se S| X(s)<x})

O Note that 1s non-decreasing in x, 1.€.
x, <x,=> F.(x)<F (x,)

SRR im F (x) = O JECSEN lim ' (x) =1
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Probability density functions (pdf)

1-5 T T T
— Lognormal(0,1)
—— Gamma(.53,3)
Exponential(1.6)
— Weibull(.7,.9)
—— Pareto(1,1.5)
1 il
x
0.5 il
0 | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

X

Emphasizes main body of distribution, frequencies,
various modes (peaks), variability, skews

10
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Cumulative Distribution Function (CDF)

Lognormal(0,1)
Gamma(.53,3)

Exponential(1.6) 7
Weibull(.7,.9)
Pareto(1,1.5) -

0 2 4 6 8 10
X

12 14 16 18 20

Emphasizes skews, easy identification of median/quartiles,
converting uniform rvs to other distribution rvs

med Khedr




Numerical Data Properties

Central Tendency
(Location)

VELE o]}
(Dispersion)

Shape




Numerical Data
Properties & Measures

Viean Range

. variance
Viedian /ariance

Standarad Deviation
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Expectation of a Random Variable: E[X]

O The expectation (average) of a (discrete-valued) random variable X is

X=E(X)= ¥ xP(X =x)=§oxPX(x)

X=—o0

A0~
08 |-
— 'm —
2 -
Q.
04
02
00 ' ' ! |
5 10 15 20 25 30
mean —x—-|
" y

FIGURE 2.7. The mean n = E{(y) as the center of gravity of a distribution. Mohamed Khedr




Expectation of a Continuous Random
Variable

O The expectation (average) of a continuous random variable X i1s given by

(o o]

E(X)= | xfy (x)dx

—O0Q

O Note that this is just the continuous equivalent of the discrete expectation

E(X)= ¥ xP,(x)

X=—00
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Standard Deviation, Coeff. Of Variation,
SIQR
O Variance: second moment around the mean:
062 = E[(X-W)?]
0 Standard deviation = G

stdv(z) = o = /{22 — (@) = /1 — .
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Covariance and Correlation: Measures of
Dependence

a Covariance:  {(xi — pi)(x; — p;)) = {miz;) — {xi) {z;),

O For1 =], covariance = variance!
O Independence => covariance = 0 (not vice-versa!)

O Correlation (coefficient) is a normalized (or scaleless) form of
covariance:

cor(x;, ;) = cov (@i, ;) :

H;HJ

Q Between —1 and +1.
QZero => no correlation (uncorrelated).
QO Note: uncorrelated DOES NOT mean independent!
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Random Vectors & Sum of R.V.s

a Random Vector = [X,, ..., X ], where Xi =r.v.
O Covariance Matrix:

ad K 1s an nxn matrix...
a Kij = Cov[Xi,Xj]
aK,. =Cov[X,X.] = Var[X,]

Q Sum of independent R.v.s

Q/Z=X+Y
a PDF of Z 1s the convolution of PDFs of X and Y
pz(z) = px(x)* py(y). Can use transforms!

26 Mohamed Khedr




Characteristic Functions & Transforms

a Characteristic function: a special kind of expectation

The distribution of a random variable X' can be determined from its characteristic function, defined as
o0

Ox (1) = E[e/VX] = / px(x)e?V*d. (B.10)

QCaptures all the moments, and 1s related to the IFT of pdyf:

We see from (B.10) that the characteristic function ¢ x (/) of X (#) is the inverse Fourier transform of the distribu-
tion px (=) evaluated at f = v//(27). Thus we can obtain px () from ¢ x (/) as

1 [ |
pxlz)—= —/ dx(v)e " Fdx. (B.11)

2T J_ o

This will become significant in finding the distribution for sums of random variables.
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Important (Discrete) Random Variable:
Bernoulli

0 The simplest possible measurement on an experiment:
Q Success (X = 1) or failure (X = 0).

O Usual notation:

P()=P(X=D=p P, (0)=P(X=0)=1-p

Q E(X)=

2 8 Mohamed Khedr




Binomial can be skewed or normal
n=¢16

-
=1.7

Pr (y)—>

0 1 23 4 5 6 7 8 91011121314 1516 17 18 19 20

r— Depends upon

(c) Binomial distribution with mean p = 0.8 and n = 20.

Mean pandn !
u=E(x)=np

Pr (y) —

Standard Deviation

3 45 6 7 9 10 11 12 13 14 15 16 17 18 19 20
0 — /\/ n p (1 — p) (d) Binomial distribution withmean p = 0.5 andn = 20.

FIGURE 5.4. (continued)
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Important Random Variable:
Poisson

O A Poisson random variable X is defined by its PMF: (limit of binomial)

Where > () 1s a constant

E(X) =

O Poisson random variables are good for counting frequency of occurrence:
like the number of customers that arrive to a bank in one hour, or the
number of packets that arrive to a router in one second.

3 O Mohamed Khedr




Important Continuous Random
Variable: Exponential

0 Used to represent time, e.g. until the next arrival

a Has PDF P
(A forx =0
fX('x)_{O forx <0
for some > 0
Q Properties: [ 1

j fy(dx=1 and E(X)=—

a Need to use integration by Parts!
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Gaussian/Normal

fx(x)
O Normal Distribution: S}
Completely characterized by 7
mean (W) and variance (G?) |

O Q-function: one-sided tail of

normal pdf

P o J. 2y
Q(z) =»(x > 2) = / Y /24y,
2(2) = pl = 7

O erfc(): two-sided tail.

erf(x)
0.5

0.4+

0.3+

0.2+

0.1

a So:

Ci2)i= éerfc (;§>

32
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Normal Distribution: Why?

‘ ‘ ‘ l l i: Uniform distribution
“ looks nothing like

bell shaped (gaussian)!
! l | | Large spread (0)!

One die

3

(a)
|||l'
T 2 3

(b) Two dice

] . l | l | o CENTRAL LIMIT TENDENCY!

(¢) Three dice

2 3
(d) Fived
2 3

(e) Ten dice

H“Il
4 5 6

| Sum of r.v.s from a uniform
«— distribution after very few samples
““ " looks remarkably normal

FIGURE 2.10. Distribution of average scores from throwing various numbers of dice.
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Normal
Distribution

O

Standardize the
Normal Distribution

Standardized

Normal Distribution

(5:1

X - p=0  Z

One table!
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Obtaining the Probability

Standardized Normal
Probability Table (Portion)

.02 \ c=1
0000|.0040|.008 0478
910398/ 0438 i
0793.0832/.0871

2 u=0 .12 Z
1179|1217 \f25§\ Shaded area

™ Probabilities exaggerated
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Example
P(X = 8)

Xu85
) 10

Normal Standardized
Distribution Normal Distribution

c=10 oc=1

Z=

= 30‘

2000

3821
1179
N L/ A . DN

u=5 8 X u=0 .30 Z




Q-function:
Tail of Normal
Distribution

Qz)=P(Z>2)=1-P|Z < 1z]

1. Areas under the Normal Distribution

.

-
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The table gives the cumulative probability

up to the standardised normal value 2
i z
_L exp(-§2?) di

l.e.

PlI<z2]

0.00

0.5000
0.5398
0.5793
0.6179
0.6554

0.6915
0.7257
0.7580
0.7881
0.8159

0.8413
0.8643
0.8849
0.9032
0.9192

0.9332
0.9452
0.9554
0.9641
0.9713

0.9773
0.9821
0.9861
0.9893
0.9918

0.9938
0.9953
0.9965
0.9974
0.9981

3.00
0.9986

=Jﬂr

=

0.01

0.5040
0.5438
0.5832
0.6217
0.6591

0.6950
0.7291
0.7611
0.7910
0.8186

0.8438
0.8665
0.8869
0.9049
0.9207

0.9345
0.9463
0.9564
0.9649
0.9719

0.9778
0.9826
0.9865
0.989%
0.9920

0.9940
0.9955
0.9966
0.9975
0.9982

3.10
0.99%0

0.02

0.5080
0.5478
0.5871
0.6255
0.6628

0.6985
0.7324
0.7642
0.7939
0.8212

0.8461
0.8686
0.8888
0.9066
0.9222

0.9357
0.9474
0.9573
0.9656
0.9726

0.9783
0.9830
0.9868
0.9898
0.9922

0.9941
0.9956
0.9967
0.9976
0.9982

3.20
0.9993

0.03

0.5120
0.5517
0.5910
0.6293
0.6664

0.7019
0.7357
0.7673
0.7967
0.8238

0.8485
0.8708
0.8907
0.9082
0.9236

0.9370
0.9484
0.9582
0.9664
0.9732

0.9788
0.9834
0.9871
0.9901
0.9924

0.9943
0.9957
0.9968
0.9977
0.9983

3.30
0.9995

S

P[I<t]

/i

0.04

0.5159
0.5557
0.5948
0.6331
0.6700

0.7054
0.7389
0.7704
0.7995
0.8264

0.8508
0.8729
0.8925
0.9099
0.9251

0.9382
0.9495
0.9591
0.9671
0.9738

0.9793
0.9838
0.9874
0.9904
0.9927

0.9945
0.9959
0.9969
0.9977
0.9984

3.40
0.9997

0.05

0.5199
0.5596
0.5987
0.6368
0.6736

0.7088
0.7422
0.7734
0.8023
0.8289

0.8531
0.8749
0.8944
0.9115
0.9265

0.9394
0.9505
0.9599
0.9678
0.9744

0.9798
0.9842
0.9878
0.9906
0.9929

0.9946
0.9960
0.9970
0.9978
0.9984

3.50
0.9998

0.06

0.5239
0.5636
0.6026
0.6406
0.6772

0.7123
0.7454
0.7764
0.8051
0.8315

0.8554
0.8770
0.8962
0.9131
0.9279

0.9406
0.9515
0.9608
0.9686
0.9750

0.9803
0.9846
0.9881
0.9909
0.9931

0.9948
0.9961
0.9971
0.9979
0.9985

3.60
0.9998

0.07

0.5279
0.5675
0.6064
0.6443
0.6808

0.7157
0.7486
0.7794
0.8078
0.8340

0.8577
0.8790
0.8980
0.9147
0.9292

0.9418
0.9525
0.9616
0.9693
0.9756

0.9808
0.9850
0.9884
0.9911
0.9932

0.9949
0.9962
0.9972
0.9980
0.9985

3.70
0.99%9

z
0.08

0.5319
0.5714
0.6103
0.6480
0.6844

0.7190
0.7517
0.7823
0.8106
0.8365

0,8599
0.8804
0.8997
0.9162
0.9306

0.9429
0.9535
0.9625
0.9699
0.9761

0.9812
0.9854
0,9887
0.9913
0.9934

0.9951
0.9963
0.9973
0.9980
0.9986

3.80
0.9999

0.09

0.5359
0.5753
0.6141
0.6517
0.6879

0.7224
0.7549
0.7854
0.8133
0.8389

0.8621
0.8830
0.9015
0.9177
0.9319

0.9441
0.9545
0.9633
0.9706
0.9767

0.9817
0.9857
0.98%0
0.9916
0.9936

0.9952
0.9964
0.9974
0.9981
0.9986

3.90
1.0000




Gaussian Random
Vectors
(uncorrelated vs

correlated)

g
A5
éf%o

2711500 A\
""'"%'Q’o‘ “““ RN

4| i
2 - _
. _
X ol i
S _
NS

_4 | _

x | | | |

-4 -2 0 2 4

X-axis
(a) (b)

(a) Gaussian pdf with X=Y=0,0x=0y=2and P= 0.9;(b)Contours of constant density.
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Complex Gaussian R.V: Circular Symmetry

O A complex Gaussian random variable X whose real and
imaginary components are 1.1.d. gaussian X = Xp + X7
Q ... satisfies a circular symmetry property:
0O e®X has the same distribution as X for any ¢.
O e® multiplication: rotation in the complex plane.
O We shall call such a random variable circularly symmetric
complex Gaussian,
0 ...denoted by CN(0, 6?), where 62 = E[IXI?].
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Related Distributions

fx(X)

1 Exponential

M

/_ ______ / Rayleigh
0.606 Uniform
' /
N N\
b-a | |
| | i
0 o a b X

The rayleigh, exponential, and uniform pdf ’s.

X=[X,, ..., X ] 1s Normal
IXI1l 1s Rayleigh { eg: magnitude of a complex gaussian channel X, + jX, }
IIXI1I? is Chi-Squared w/ n-degrees of freedom
When n = 2, chi-squared becomes exponential. {eg: power in
complex gaussian channel: sum of squares... }
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