EC 7xx Wireless Communications Spring 2007

Mohamed Essam Khedr Department of Electronics and Communications

Overview, Probabilities, Random variables, Random process

http://groups.yahoo.com/group/ECspring2007 WCspring2007- subscribe@yahoogroups.com

Grades

Presentation and Report

Q Roadmap

Probability

- **Think of probability as modeling an experiment Eg:** tossing a coin!
- The set of all possible *outcomes* is the *sample space*: S
- □ Classic "Experiment": **O** Tossing a die: $S = \{1, 2, 3, 4, 5, 6\}$ Any subset A of S is an *event*: $\Box A = \{$ *the outcome is even* $\} = \{2, 4, 6\}$

Probability of Events: Axioms

•P is the Probability Mass function if it <u>maps</u> each event A, into ^a real number *P(A)*, and:

i.)
$$
P(A) \ge 0
$$
 for every event $A \subseteq S$

ii.) $P(S) = 1$

iii.) If A and B are mutually exclusive events then,

Probability of Events

…In fact for any sequence of pair-wise-mutuallyexclusive events, we have

 $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, ... \quad \text{(i.e. } \mathcal{A}_i\mathcal{A}_j = 0 \text{ for any } i \neq j \text{)}$

$$
A_i \cap A_j = \phi
$$
, and $\bigcup_{i=1}^{i=1} A_i = S$

 A_j
 A_j
 A_n
 A_n
 A_n
 $P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$

Approximations/Bounds: Union Bound

$$
P(A \cup B) \le P(A) + P(B)
$$

\n $P(A_1 \cup A_2 \cup ... A_N) \le \sum_{i=1..N} P(A_i)$

 \Box Applications:

Getting bounds on BER (bit-error rates),

- \Box In general, bounding the tails of prob. distributions
- \Box We will use this in the analysis of error probabilities with various coding schemes

Approximations/Bounds: log(1+x) \Box $\log_2(1+x) \approx x$ for small x

Q Application: Shannon capacity w/ AWGN noise:

Bits-per-Hz = C/B = log₂ $(1+\gamma)$

 \Box If we can increase SNR (γ) linearly when γ is small (i.e. very poor, eg: cell-edge)…

 \Box ... we get a <u>linear</u> increase in capacity.

 When γ is **large**, of course increase in γ gives only ^a diminishing return in terms of capacity: $log(1+\gamma)$

Schwartz Inequality & Matched Filter

- \Box Inner Product $(\mathbf{a}^T \mathbf{x}) \leq P$ roduct of Norms (i.e. $|\mathbf{a}||\mathbf{x}|$)
	- \Box Projection length \leq Product of Individual Lengths
- \Box This is the *Schwartz Inequality*!
	- **Equality happens when a** and **x** are in the same direction (i.e. $\cos\theta = 1$, when $\theta = 0$)
- **Application: "matched" filter**
	- \Box Received vector $y = x + w$ (zero-mean AWGN)
	- Note: **^w** is infinite dimensional
	- **Q** Project y to the subspace formed by the finite set of transmitted symbols **x**: y'
	- y' is said to be ^a "**sufficient statistic**" for detection, i.e. reject the noise dimensions outside the signal space.
	- **□** This operation is called "*matching*" to the signal space (projecting)
	- \Box Now, pick the x which is closest to y' in distance (ML detection $=$ nearest neighbor)

Conditional Probability

• *^P*(*^A* | *^B*)= (conditional) probability that the outcome is in *A* given that we know the outcome in *B*

•**Example: Toss one die.**

 $P(i=3|i \text{ is odd})$ =

 \bullet Note that: $P(AB) = P(B)P(A \mid B) = P(A)P(B \mid A)$

Independence

- Events A and B are <u>independent</u> if $P(AB) = P(A)P(B)$.
- \Box Also: $P(A | B) = P(A)$ and $P(B | A) = P(B)$
- **□** Example: A card is selected at random from an ordinary deck of cards.

□ A=event that the card is an ace.

□ B=event that the card is a diamond.

Random Variable as ^a Measurement

 \Box Thus a random variable can be thought of as a measurement (yielding a real number) on an experiment

Maps "*events*" to "*real numbers*"

□ We can then talk about the pdf, define the mean/variance and other moments

Continuous Probability Density Function

- \Box 1. Mathematical Formula
- 2. Shows All Values, *^x*, & Frequencies, f(*x*) f(*X*) Is *Not* Probability
- \Box 3. **Properties**

(Area Under Curve) All *X* $f(x) \geq 0$, $a \leq x \leq b$

Cumulative Distribution Function

The cumulative distribution function (CDF) for a random variable *X* is

$$
F_X(x) = P(X \le x) = P(\lbrace s \in S \mid X(s) \le x \rbrace)
$$

\nTo Note that $F_X(x)$ is non-decreasing in x, i.e.
\n
$$
x_1 \le x_2 \implies F_X(x_1) \le F_X(x_2)
$$

\nand
$$
\lim_{x \to \infty} F_X(x) = 0
$$
 and
$$
\lim_{x \to \infty} F_X(x) = 1
$$

P**robability** d**ensity** f**unctions (pdf)**

Mohamed Khedr **18** Mohamed Khedr **18**

C**umulative** D**istribution** F**unction (CDF)**

Converting uniform rvs to other distribution rvs Emphasizes skews, easy identification of median/quartiles,

med Khedr

Numerical Data Properties

Numerical Data Properties & Measures

Expectation of ^a Random Variable: E[X]

 \Box The expectation (average) of ^a (discrete-valued) random variable *X* is

Expectation of ^a Continuous Random Variable

 \Box The expectation (average) of ^a continuous random variable *X* is given by

$$
E(X) = \int_{-\infty}^{\infty} x f_X(x) dx
$$

 \Box Note that this is just the continuous equivalent of the discrete expectation

$$
E(X) = \sum_{x=-\infty}^{\infty} x P_X(x)
$$

Standard Deviation, Coeff. Of Variation, SIQR

U Variance: second moment around the mean:

 $\Box \sigma^2 = E[(X-\mu)^2]$

Standard deviation ⁼ σ

$$
stdv(x) = \sigma = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\mu'_2 - \mu^2},
$$

Covariance and Correlation: Measures of Dependence

Covariance: $((x_i - \mu_i)(x_i - \mu_i)) =$

 \Box For $i = j$, covariance = variance!

 \Box Independence => covariance = 0 (not vice-versa!)

□ Correlation (coefficient) is a normalized (or scaleless) form of covariance:

$$
\operatorname{cor}(x_i, x_j) \equiv \frac{\operatorname{cov}(x_i, x_j)}{\sigma_i \sigma_j},
$$

 \Box Between -1 and $+1$.

 \Box Zero \Rightarrow no correlation (uncorrelated). **□** Note: uncorrelated DOES NOT mean independent!

Random Vectors & Sum of R.V.s

Q Random Vector = $[X_1, ..., X_n]$, where $Xi = r.v$.

Q Covariance Matrix:

■ K is an nxn matrix… $\Box K_{ij} = Cov[X_i, X_j]$ $\mathbf{X}_{ii} = \text{Cov}[X_i, X_i] = \text{Var}[X_i]$

 Sum of *independent* R.v.s \blacksquare Z = X + Y PDF of Z is the *convolution* of PDFs of X and Y Can use transforms!

Characteristic Functions & Transforms

□ Characteristic function: a special kind of expectation

The distribution of a random variable X can be determined from its *characteristic function*, defined as

$$
\phi_X(\nu) \stackrel{\triangle}{=} \mathbf{E}[e^{j\nu X}] = \int_{-\infty}^{\infty} p_X(x)e^{j\nu x} dx.
$$
 (B.10)

Captures all the *moments*, and is related to the *IFT of pdf:*

We see from (B.10) that the characteristic function $\phi_X(\nu)$ of $X(t)$ is the inverse Fourier transform of the distribution $p_X(x)$ evaluated at $f = \nu/(2\pi)$. Thus we can obtain $p_X(x)$ from $\phi_X(\nu)$ as

$$
p_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_X(\nu) e^{-j\nu x} dx.
$$
 (B.11)

This will become significant in finding the distribution for sums of random variables.

Important (Discrete) Random Variable: Bernoulli

 \Box The simplest possible measurement on an experiment: \Box **Success** ($X = 1$) or **failure** ($X = 0$).

<u></u> Usual notation:

$$
P_X(1) = P(X = 1) = p \qquad P_X(0) = P(X = 0) = 1 - p
$$

E(X)=

 Poisson random variables are good for *counting frequency of occurrence*: like the number of customers that arrive to ^a bank in one hour, or the number of packets that arrive to ^a router in one second.

Important Continuous Random Variable: Exponential

□ Used to represent time, e.g. until the next arrival

 Has PDF for somee $\lambda > 0$ **O** Properties: $\rm 0$ $\int_{0}^{\infty} f_X(x) dx = 1$ and $E(X) = \frac{1}{\lambda}$ for $\mathrm{x}\geq 0$ $\left(x\right) = \begin{cases} \lambda e & \text{for } x \ge 0 \\ 0 & \text{for } x < 0 \end{cases}$ for $x < 0$ *x e* $f_{\overline{X}}(x)$ $\lambda e^{-\lambda x}$ for $x \ge$ =

■ Need to use integration by Parts!

1

Gaussian/Normal

Normal Distribution:

Completely characterized by mean (μ) and variance (σ^2)

Q-function: one-sided tail of normal pdf

$$
Q(z) \stackrel{\triangle}{=} p(x > z) = \int_z^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.
$$

<u>erfc():</u> two-sided tail. So: $Q(z) = \frac{1}{2}$ erfc

$$
ly.
$$
\n
$$
0.5
$$
\n
$$
0.4
$$
\n
$$
0.3
$$
\n
$$
0.2
$$
\n
$$
0.1
$$
\n
$$
-3
$$
\n
$$
-2
$$
\n
$$
-1
$$
\n
$$
-0.1
$$
\n
$$
-0.2
$$
\n
$$
-0.3
$$
\n
$$
-0.4
$$
\n
$$
-0.5
$$
\n1

\n1

\n
$$
2
$$
\n
$$
32
$$
\n2

\n

Normal Distribution: Why?

Uniform distribution looks <u>nothing</u> like bell shaped (gaussian)! Large spread $(\sigma)!$

CENTRALLIMIT TENDENCY!

Sum of r.v.s from ^a uniform distribution after <u>very few s</u>amples looks remarkably normal

Obtaining the Probability

Standardized Normal Standardized Normal Probability Table (Portion) Probability Table (Portion)

Q-function: Tail of Normal Distribution

$$
Q(z) = P(Z > z) = 1 - P[Z < z]
$$

 Khedr 37Mohamed

Complex Gaussian R.V: Circular Symmetry

- A complex Gaussian random variable X whose real and imaginary components are i.i.d. gaussian $x = x_R + jx_I$
- … satisfies ^a *circular symmetry* property:
	- \Box e^{j ϕ}X has the same distribution as X for any ϕ .
	- \Box e^{j ϕ} multiplication: rotation in the complex plane.
- We shall call such ^a random variable *circularly symmetric complex Gaussian*,
	- \Box ... denoted by <u>CN(0, σ^2)</u>, where $\sigma^2 = E[|X|^2]$.

Related Distributions

The rayleigh, exponential, and uniform pdf 's.

$X = [X_1, ..., X_n]$ is **Normal**

||X|| is $\overline{\text{Rayleigh}} \{ \text{eg: } \text{magnitude of a complex gaussian channel } X_1 + jX_2 \}$ ||X||2 is **Chi-Squared w/** *ⁿ***-degrees of freedom**

> When n ⁼ 2, chi-squared becomes **exponential**. {eg: *power* in complex gaussian channel: sum of squares…}