EC 7xx Wireless Communications Spring 2007

Mohamed Essam Khedr Department of Electronics and Communications

Overview, Probabilities, Random variables, Random process

http://groups.yahoo.com/group/ECspring2007 WCspring2007 subscribe@yahoogroups.com

	Week 1	Overview, Probabilities, Random variables, Random process
Syllabus	Week 2	Wireless channels, Statistical Channel modelling, Path loss models
	Week 3	Cellular concept and system design fundamentals
	Week 4	Modulation techniques, single and multi-carrier
Syllabus	Week 5	Diversity techniques
	Week 6	Equalization techniques
	Week 7	Mid Term exam
	Week 8	802.11 and Mac evaluation
	Week 9	Energy models in 802.11
	Week 10	Wimax and Mac layer
	Week 11	Presentations
	Week 12	Presentations
	Week 13	Presentations
	Week 14	Presentations
	Week 15	Final Exam
		2. Mohar

Grades

Load	Percentage	Date		
7 th Week Exam	25%	24 April 2007		
Final Exam	40%			
Participation	10%			
Presentation and Report	25%	10 th week and up		

Presentation and Report

□ Roadmap

Week 4	Point Distribution
Week 8	Progress report 5%
Week 13	Presentation starts 10%
Week 15	Report 10%
4	Mohamed Khe

Probability

- Think of probability as <u>modeling an experiment</u>
 Eg: tossing a coin!
- □ The set of all possible <u>outcomes</u> is the <u>sample</u> <u>space</u>: S
- Classic "Experiment":
 Tossing a die: S = {1,2,3,4,5,6}
 Any subset A of S is an *event*:
 A = {*the outcome is even*} = {2,4,6}

Probability of Events: Axioms

•P is the Probability Mass function if it <u>maps</u> each event A, into a real number *P*(*A*), and:

i.)
$$P(A) \ge 0$$
 for every event $A \subseteq S$

ii.) P(S) = 1

iii.) If A and B are mutually exclusive events then,

$$A \cap B = \phi$$

Probability of Events

...In fact for any sequence of pair-wise-mutuallyexclusive events, we have

 A_1, A_2, A_3, \dots (i.e. $A_i A_j = 0$ for any $i \neq j$)

$$A_{i} \cap A_{j} = \phi, \text{ and } \bigcup_{i=1}^{i} A_{i} = S$$

$$A_{1} \wedge A_{2} \wedge A_{i}$$

$$P(\bigcup_{n=1}^{\infty} A_{n}) = \sum_{n=1}^{\infty} P(A_{n})$$

$$P(A_{n}) = \sum_{n=1}^{\infty} P(A_{n})$$

Approximations/Bounds: <u>Union Bound</u>

$$P(A \cup B) \le P(A) + P(B)$$

$$P(A_1 \cup A_2 \cup \dots A_N) \le \Sigma_{i=1..N} P(A_i)$$

Applications:

Getting bounds on BER (bit-error rates),

- □ In general, bounding the tails of prob. distributions
- We will use this in the analysis of error probabilities with various coding schemes

Approximations/Bounds: log(1+x) $log_2(1+x) \approx x$ for <u>small</u> x

□ Application: Shannon capacity w/ AWGN noise:

□ Bits-per-Hz = C/B = $\log_2(1 + \gamma)$

If we can increase SNR (γ) linearly when γ is small (i.e. very poor, eg: cell-edge)...

 \Box ... we get a <u>linear</u> increase in capacity.

□ When γ is <u>large</u>, of course increase in γ gives only a diminishing return in terms of capacity: log $(1 + \gamma)$

Schwartz Inequality & Matched Filter

- □ Inner Product $(\mathbf{a}^T \mathbf{x}) \leq \text{Product of Norms (i.e. |a||x|)}$
 - Projection length <= Product of Individual Lengths</p>
- □ This is the *Schwartz Inequality*!
 - □ Equality happens when **a** and **x** are in the same direction (i.e. $\cos\theta = 1$, when $\theta = 0$)
- □ Application: "matched" filter
 - **\Box** Received vector $\mathbf{y} = \mathbf{x} + \mathbf{w}$ (zero-mean AWGN)
 - □ Note: w is infinite dimensional
 - Project y to the subspace formed by the finite set of transmitted symbols x: y'
 - □ y' is said to be a "<u>sufficient statistic</u>" for detection, i.e. reject the noise dimensions outside the signal space.
 - □ This operation is called "*matching*" to the signal space (projecting)
 - Now, pick the x which is closest to y' in distance (ML detection = nearest neighbor)

Conditional Probability

• P(A|B) = (conditional) probability that the outcome is in A given that we know the outcome in B

•Example: Toss one die.

$$P(i = 3 | i is odd) =$$

•Note that: P(AB) = P(B)P(A | B) = P(A)P(B | A)

Independence

- □ Events *A* and *B* are <u>independent</u> if P(AB) = P(A)P(B).
- □ Also: P(A | B) = P(A) and P(B | A) = P(B)
- Example: A card is selected at random from an ordinary deck of cards.

 \Box *A*=event that the card is an ace.

 \square *B*=event that the card is a diamond.

Random Variable as a Measurement

Thus a random variable can be thought of as a <u>measurement</u> (yielding a real number) on an experiment

□ Maps "events" to "real numbers"

■ We can then talk about the pdf, define the mean/variance and other moments

Continuous Probability Density Function

- □ 1. Mathematical Formula
- Shows All Values, *x*, & Frequencies, f(*x*)
 f(*X*) Is *Not* Probability
- **3**. Properties

 $\int f(x) dx = 1$ All X (Area Under Curve) $f(x) \ge 0, a \le x \le b$

Cumulative Distribution Function

□ The <u>cumulative distribution function</u> (CDF) for a random variable *X* is

$$F_{X}(x) = P(X \le x) = P(\{s \in S \mid X(s) \le x\})$$

• Note that $F_{X}(x)$ is non-decreasing in x , i.e.

$$x_{1} \le x_{2} \Longrightarrow F_{X}(x_{1}) \le F_{X}(x_{2})$$

• Also $\lim_{x \to \infty} F_{x}(x) = 0$ and $\lim_{x \to \infty} F_{x}(x) = 1$

<u>Probability</u> density functions (pdf)

Mohamed Khedr

<u>C</u>umulative <u>D</u>istribution <u>Function</u> (<u>CDF</u>)

Emphasizes skews, easy identification of median/quartiles, converting uniform rvs to other distribution rvs

med Khedr

Numerical Data Properties

Numerical Data Properties & Measures

Expectation of a Random Variable: E[X]

 \Box The <u>expectation</u> (average) of a (discrete-valued) random variable X is

Mohamed Khedr

Expectation of a Continuous Random Variable

 \Box The expectation (average) of a continuous random variable X is given by

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

□ Note that this is just the continuous equivalent of the discrete expectation

$$E(X) = \sum_{x = -\infty}^{\infty} x P_X(x)$$

Standard Deviation, Coeff. Of Variation, SIQR

□ <u>Variance</u>: second moment around the mean:

 $\Box \sigma^2 = E[(X-\mu)^2]$

 $\Box Standard deviation = \sigma$

$$\operatorname{stdv}(x) = \sigma = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\mu_2' - \mu^2},$$

Covariance and Correlation: Measures of Dependence

 $\Box \underline{\text{Covariance:}} \quad \langle (x_i - \mu_i)(x_j - \mu_j) \rangle = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle,$

• For i = j, covariance = variance!

□ Independence => covariance = 0 (not vice-versa!)

Correlation (coefficient) is a normalized (or scaleless) form of covariance:

$$\operatorname{cor}(x_i, x_j) \equiv \frac{\operatorname{cov}(x_i, x_j)}{\sigma_i \sigma_j},$$

□ Between -1 and +1.

Zero => no correlation (uncorrelated).
 Note: uncorrelated <u>DOES NOT</u> mean independent!

Random Vectors & Sum of R.V.s

□ Random Vector = $[X_1, ..., X_n]$, where Xi = r.v.

□ <u>Covariance Matrix:</u>

■ K is an nxn matrix...
■ K_{ij} = Cov[X_i,X_j]
■ K_{ii} = Cov[X_i,X_i] = Var[X_i]

Sum of *independent* R.v.s
Z = X + Y
PDF of Z is the *convolution* of PDFs of X and Y p_Z(z) = p_X(x) * p_Y(y). Can use transforms!

Characteristic Functions & Transforms

□ Characteristic function: a special kind of expectation

The distribution of a random variable X can be determined from its *characteristic function*, defined as

$$\phi_X(\nu) \stackrel{\triangle}{=} \mathbf{E}[e^{j\nu X}] = \int_{-\infty}^{\infty} p_X(x) e^{j\nu x} dx. \tag{B.10}$$

Captures all the *moments*, and is related to the *IFT of pdf*:

We see from (B.10) that the characteristic function $\phi_X(\nu)$ of X(t) is the inverse Fourier transform of the distribution $p_X(x)$ evaluated at $f = \nu/(2\pi)$. Thus we can obtain $p_X(x)$ from $\phi_X(\nu)$ as

$$p_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_X(\nu) e^{-j\nu x} dx.$$
 (B.11)

This will become significant in finding the distribution for sums of random variables.

Important (Discrete) Random Variable: Bernoulli

The simplest possible measurement on an experiment:
 Success (X = 1) or failure (X = 0).

□ Usual notation:

$$P_X(1) = P(X = 1) = p$$
 $P_X(0) = P(X = 0) = 1 - p$

 $\Box E(X) =$

Poisson random variables are good for <u>counting frequency of occurrence</u>: like the number of customers that arrive to a bank in one hour, or the number of packets that arrive to a router in one second.

Important Continuous Random Variable: <u>Exponential</u>

□ Used to represent time, e.g. until the next arrival

 $f_X(x) = \begin{cases} \lambda e^{-\lambda x} \\ 0 \end{cases}$

□ Has PDF

□ Properties:

for some

 $\int_{-\infty}^{\infty} f_X(x) dx = 1 \text{ and } E(X) = \frac{1}{\lambda}$

□ Need to use integration by Parts!

for $x \ge 0$

for x < 0

Gaussian/Normal

32

Normal Distribution:

Completely characterized by mean (μ) and variance (σ^2)

Q-function: one-sided tail of normal pdf

$$Q(z) \stackrel{\triangle}{=} p(x > z) = \int_z^\infty \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.$$

□ <u>erfc():</u> two-sided tail.

 \Box So:

$$Q(z) = \frac{1}{2} \mathrm{erfc}\left(\frac{z}{\sqrt{2}}\right)$$

Normal Distribution: Why?

Uniform distribution looks <u>nothing</u> like bell shaped (gaussian)! Large spread (σ)!

CENTRAL LIMIT TENDENCY!

<u>Sum of r.v.s</u> from a uniform distribution after <u>very few</u> samples looks remarkably normal

Obtaining the Probability

Standardized Normal Probability Table (Portion)

Example $\mathbf{P}(X \ge \mathbf{8})$ $Z = \frac{X - \mu}{\sigma} = \frac{8 - 5}{10} = .30$ **Standardized Distribution**

Normal Distribution

Normal

Q-function: Tail of Normal Distribution

$$Q(z) = P(Z > z) = 1 - P[Z < z]$$

STANDARD STATISTICAL TABLES												
1	1. Areas under the Normal Distribution											
	The table gives the cumulative probability											
	up to the standardised normal value z i.e. z P[Z < z]											
	$\Pr[\pi(z_1) = \frac{1}{\sqrt{2}} \exp(-\frac{z_1}{2}) dz$											
	$P[z < z] = \int J 2\pi$											
										-		
						97			0	Z		
	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
	0.0	0 5000	0 5040	0 5080	0 5120	0 5150	0 5199	0 5239	0 5279	0 5319	0 5359	
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	
	0.5	0.6915	0,6950	0.6985	0.7019	0.7054	0.7088	0.7123	0,7157	0.7190	0.7224	
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	
	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7854	
	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8804	0.8830	
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	
	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	
	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	
	2.0	0.9773	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	
	2.2	0.9861	0.9865	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890	
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	
	2.4	0.9918	0.9920	0.9922	0.9924	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	
	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	
	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	
	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9980	0.9980	0.9981	
	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	
	z	3.00	3.10	3.20	3.30	3.40	3.50	3.60	3.70	3.80	3.90	
	Р	0.9986	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000	r
												L

Complex Gaussian R.V: <u>Circular Symmetry</u>

- □ A complex Gaussian random variable X whose real and imaginary components are i.i.d. gaussian $\mathbf{x} = \mathbf{x}_R + j\mathbf{x}_I$
- □ ... satisfies a *circular symmetry* property:
 - \Box e^{j ϕ}X has the same distribution as X for any ϕ .
 - \Box e^{j ϕ} multiplication: rotation in the complex plane.
- □ We shall call such a random variable *circularly symmetric complex Gaussian*,
 - □ ...denoted by $\underline{CN(0, \sigma^2)}$, where $\sigma^2 = E[|X|^2]$.

Related Distributions

The rayleigh, exponential, and uniform pdf 's.

$X = [X_1, ..., X_n]$ is <u>Normal</u>

||X|| is <u>**Rayleigh**</u> { eg: *magnitude* of a complex gaussian channel $X_1 + jX_2$ } ||X||² is <u>**Chi-Squared w/***n*-degrees of freedom</u>

When n = 2, chi-squared becomes **<u>exponential</u>**. {eg: *power* in complex gaussian channel: sum of squares...}