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Syllabus

� Tentatively
Equalization techniquesWeek 6

Mid Term examWeek 7

802.11 and Mac evaluationWeek 8

Energy models in 802.11Week 9

Wimax and Mac layerWeek 10

PresentationsWeek 11

PresentationsWeek 12

PresentationsWeek  13

Final ExamWeek 15

PresentationsWeek  14

Diversity techniquesWeek 5

Modulation techniques, single and multi-carrierWeek 4 

Cellular concept and system design fundamentalsWeek 3

Wireless channels, Statistical Channel modelling, Path loss 
models

Week 2

Overview, Probabilities, Random variables, Random 
process

Week 1
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Grades

10th week and up25%Presentation and 
Report

10%Participation

40%Final Exam

24 April 200725%7th Week Exam

DatePercentageLoad
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Presentation and Report

� Roadmap

Progress report 5%Week 8

Presentation starts 10%Week  13

Report 10%Week 15

Point DistributionWeek 4 
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White Gaussian Noise
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Probability
� Think of probability as modeling an experiment

�Eg: tossing a coin!
� The set of all possible outcomes is the sample 

space: S

� Classic “Experiment”: 
� Tossing a die: S = {1,2,3,4,5,6}

�Any subset A of S is an event:  
�A = {the outcome is even} = {2,4,6}
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Probability of Events: Axioms
•P is the Probability Mass function if it maps each 

event A, into a real number P(A), and:
i.)

ii.)  P(S) = 1

iii.)If A and B are mutually exclusive events then,                            

( ) 0 for every event P A A S≥ ⊆

( ) ( ) ( )P A B P A P B∪ = +BA

φ=∩ BA
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Probability of Events

…In fact for any sequence of pair-wise-mutually-
exclusive events,  we have                

1 2 3, , ,...    (i.e.  0 for any )i jA A A A A i j= ≠
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Approximations/Bounds: Union Bound

� Applications: 
� Getting bounds on BER (bit-error rates), 
� In general, bounding the tails of prob. distributions

� We will use this in the analysis of error probabilities with various coding 
schemes

A B

P(A ∪ B) <= P(A) + P(B) 
P(A1 ∪∪∪∪ A2 ∪∪∪∪ … AN) <= ΣΣΣΣi= 1..N P(Ai)
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Approximations/Bounds: log(1+x)

� log2(1+x) � x for small x

� Application: Shannon capacity w/ AWGN noise: 
� Bits-per-Hz = C/B = log2(1+ γ)
� If we can increase SNR (γ) linearly when γ is small 

(i.e. very poor, eg: cell-edge)…
�… we get a linear increase in capacity. 

� When γ is large, of course increase in γ gives only a 
diminishing return in terms of capacity: log (1+ γ)
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Schwartz Inequality & Matched Filter
� Inner Product (aTx) <= Product of Norms (i.e. |a||x|)

� Projection length <= Product of Individual Lengths
� This is the Schwartz Inequality!

� Equality happens when a and x are in the same direction (i.e. cosθ = 1, 
when θ = 0)

� Application: “matched” filter
� Received vector y = x + w (zero-mean AWGN)
� Note: w is infinite dimensional
� Project y to the subspace formed by the finite set of transmitted symbols

x: y’
� y’ is said to be a “sufficient statistic” for detection, i.e. reject the noise 

dimensions outside the signal space. 
� This operation is called “matching” to the signal space (projecting)
� Now, pick the x which is closest to y’ in distance (ML detection = 

nearest neighbor)
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Conditional Probability
( | )P A B• = (conditional) probability that the 

outcome is in A given that we know the 
outcome in B

•Example: Toss one die.

•Note that:

( )
( | )          ( ) 0

( )
P AB

P A B P B
P B

= ≠

( 3 | i is odd)=P i =

( ) ( ) ( | ) ( ) ( | )P AB P B P A B P A P B A= =
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Independence
� Events A and B are independent if P(AB) = P(A)P(B).
� Also: and 
� Example: A card is selected at random from an ordinary 

deck of cards. 
� A=event that the card is an ace. 
� B=event that the card is a diamond.

( )P AB =

( )P A =

( ) ( )P A P B =

( )P B =

( | ) ( )P A B P A= ( | ) ( )P B A P B=
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Random Variable as a Measurement
� Thus a random variable can be thought of as a 

measurement (yielding a real number) on an experiment
� Maps “events” to “real numbers” 
� We can then talk about the pdf, define the 

mean/variance and other moments 
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Continuous Probability Density Function

� 1. Mathematical Formula

� 2. Shows All Values, x, & 
Frequencies, f(x)

� f(X) Is Not Probability

� 3. Properties

(Area Under Curve)(Area Under Curve)
ValueValue

(Value, Frequency)(Value, Frequency)

FrequencyFrequency

f(x)f(x)

aa bb
xxff xx dxdx

ff xx

(( ))

(( ))

All All XX

aa x x bb

���� ==

≥≥ ≤≤ ≤≤

11

0,0,
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Cumulative Distribution Function

� The cumulative distribution function (CDF) for a random 
variable X is 

� Note that            is non-decreasing in x, i.e.

� Also and 

( ) ( ) ({ | ( ) })XF x P X x P s S X s x= ≤ = ∈ ≤
( )XF x

1 2 1 2( ) ( )x xx x F x F x≤ � ≤

lim ( ) 1xx
F x

→∞
=lim ( ) 0xx

F x
→−∞

=
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Probability density functions (pdf)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
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1.5

x

f(
x)

Lognorm al(0 ,1)
G am m a(.53 ,3)
E x pone ntia l(1 .6 )
W e ibull(.7 ,.9 )
P are to(1 ,1 .5)

Emphasizes main body of distribution, frequencies, 
various modes (peaks), variability, skews
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Cumulative Distribution Function (CDF)
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

Lognorm al(0 ,1)
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Pare to(1,1 .5)

Emphasizes skews, easy identification of median/quartiles, 
converting uniform rvs to other distribution rvs

median
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Numerical Data Properties

Central Tendency Central Tendency 
(Location)(Location)

Variation Variation 
(Dispersion)(Dispersion)

ShapeShape
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Numerical Data
Properties & Measures

Numerical Data
Properties

MeanMean

MedianMedian

Central
Tendency

RangeRange
VarianceVariance

Standard DeviationStandard Deviation

Variation

SkewSkew

Shape
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Expectation of a Random Variable: E[X]
� The expectation (average) of a (discrete-valued) random variable X is

( ) ( ) ( )Xx
X E X xP X x xP x

∞ ∞

=−∞ −∞
= = Σ = = Σ
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Expectation of a Continuous Random 
Variable

� The expectation (average) of a continuous random variable X is given by

� Note that this is just the continuous equivalent of the discrete expectation

( ) ( )XE X xf x dx
∞

−∞

= �

( ) ( )Xx
E X xP x

∞

=−∞
= Σ
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� Variance: second moment around the mean: 
�σ2 = E[(X-µ)2]

� Standard deviation = σ

Standard Deviation, Coeff. Of Variation, 
SIQR
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Covariance and Correlation: Measures of 
Dependence

� Covariance: = 

� For i = j, covariance = variance!
� Independence => covariance = 0 (not vice-versa!)

� Correlation (coefficient) is a normalized (or scaleless) form of 
covariance:

� Between –1 and +1. 
�Zero => no correlation (uncorrelated). 
�Note: uncorrelated DOES NOT mean independent!
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Random Vectors & Sum of R.V.s
� Random Vector = [X1, …, Xn], where Xi = r.v.
� Covariance Matrix:

�K is an nxn matrix… 
�Kij = Cov[Xi,Xj]
�Kii = Cov[Xi,Xi] = Var[Xi] 

� Sum of independent R.v.s
�Z = X + Y
�PDF of Z is the convolution of PDFs of X and Y

Can use transforms!
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Characteristic Functions & Transforms

� Characteristic function: a special kind of expectation

�Captures all the moments, and is related to the IFT of pdf:
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Important (Discrete) Random Variable: 
Bernoulli

� The simplest possible measurement on an experiment: 
� Success (X = 1) or failure (X = 0).

� Usual notation:

� E(X)=

(1) ( 1)         (0) ( 0) 1X XP P X p P P X p= = = = = = −
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Binomial can be skewed or normal

Depends upon
p and n !

µµµµ

σσσσ

==== ====

==== −−−−

E x np

np p

( )

( )1

MeanMean

Standard DeviationStandard Deviation
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Important Random Variable:
Poisson

� A Poisson random variable X is defined by its PMF: (limit of binomial)

Where > 0 is a constant

E(X) = 

� Poisson random variables are good for counting frequency of occurrence:
like the number of customers that arrive to a bank in one hour, or the 
number of packets that arrive to a router in one second.

( )             0,1, 2,...
!

x

P X x e x
x

λλ −= = =

λ

λ
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Important Continuous Random 
Variable: Exponential

� Used to represent time, e.g. until the next arrival
� Has PDF

for some    > 0
� Properties:

�Need to use integration by Parts!

0

1
( ) 1   and    ( )Xf x dx E X

λ

∞

= =�

for x  0
0 for x < 0( ) {         

xe
Xf x

λλ − ≥=

λ
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Gaussian/Normal

� Normal Distribution:
Completely characterized by 
mean (µ) and variance (σ2)

� Q-function: one-sided tail of 
normal pdf

� erfc(): two-sided tail. 
� So: 
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Normal Distribution: Why?

Uniform distribution
looks nothing like 
bell shaped (gaussian)!
Large spread (σ)!

Sum of r.v.s from a uniform 
distribution after very few samples 
looks remarkably normal

CENTRAL LIMIT TENDENCY!
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Standardize the
Normal Distribution

Xµµµµ

σσσσ

One table!One table!

Normal 
Distribution
Normal 
Distribution

µµµµ = 0

σσσσ    = 1

Z

Z X==== −−−− µµµµ
σσσσ Standardized 

Normal Distribution
Standardized 

Normal Distribution
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Zµµµµ= 0

σσσσ = 1

.12

Z .00 .01

0.0 .0000 .0040 .0080

.0398 .0438

0.2 .0793 .0832 .0871

0.3 .1179 .1217 .1255

Obtaining the Probability

.0478.0478.0478

.02.02

0.10.1 .0478

Standardized Normal 
Probability Table (Portion)
Standardized Normal Standardized Normal 
Probability Table (Portion)Probability Table (Portion)

ProbabilitiesProbabilitiesProbabilities
Shaded area 
exaggerated
Shaded area Shaded area 
exaggeratedexaggerated
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Example
P(X ≥≥≥≥ 8)

Xµµµµ = 5

σσσσ = 10

8

Normal 
Distribution
Normal Normal 
DistributionDistribution

Standardized 
Normal Distribution

Standardized Standardized 
Normal DistributionNormal Distribution

Z X==== −−−− ==== −−−− ====µµµµ
σσσσ

8 5
10

30.

Zµµµµ = 0

σσσσ = 1

.30

.1179.1179.1179

.5000.5000
.3821.3821.3821

Shaded area exaggeratedShaded area exaggeratedShaded area exaggerated
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Q-function: 
Tail of Normal 

Distribution

Q(z) = P(Z > z) = 1 – P[Z < z]
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Gaussian Random 
Vectors 

(uncorrelated vs
correlated)
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Complex Gaussian R.V: Circular Symmetry

� A complex Gaussian random variable X whose real and 
imaginary components are i.i.d. gaussian

� … satisfies a circular symmetry property: 
� ejφX has the same distribution as X for any φ.
� ejφ multiplication: rotation in the complex plane.

� We shall call such a random variable circularly symmetric 
complex Gaussian, 
� …denoted by CN(0, σ2), where σ2 = E[|X|2].
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Related Distributions

X = [X1, …, Xn] is Normal
||X|| is Rayleigh { eg: magnitude of a complex gaussian channel X1 + jX2 }
||X||2 is Chi-Squared w/ n-degrees of freedom

When n = 2, chi-squared becomes exponential. {eg: power in 
complex gaussian channel: sum of squares…}


