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Syllabus

� Tentatively
Equalization techniquesWeek 6

Mid Term examWeek 7

802.11 and Mac evaluationWeek 8

Energy models in 802.11Week 9

Wimax and Mac layerWeek 10

PresentationsWeek 11

PresentationsWeek 12

PresentationsWeek  13

Final ExamWeek 15

PresentationsWeek  14

Demodulation techniques, Diversity techniquesWeek 5

Modulation techniques, single and multi-carrierWeek 4 

Cellular concept and system design fundamentalsWeek 3

Wireless channels, Statistical Channel modelling, Path loss 
models

Week 2

Overview, Probabilities, Random variables, Random 
process

Week 1
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Signal space

� What is a signal space?
� Vector representations of signals in an N-dimensional 

orthogonal space
� Why do we need a signal space?

� It is a means to convert signals to vectors and vice versa.
� It is a mean to calculate signals energy and Euclidean 

distances between signals.
� Why are we interested in Euclidean distances between signals?

� For detection purposes: The received signal is transformed 
to a received vectors. The signal which has the minimum 
distance to the received signal is estimated as the 
transmitted signal.
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Schematic example of a signal space

),()()()(

),()()()(

),()()()(

),()()()(

212211

323132321313

222122221212

121112121111

zztztztz

aatatats

aatatats

aatatats

=⇔+=
=⇔+=
=⇔+=
=⇔+=

z
s
s
s

ψψ
ψψ
ψψ
ψψ

)(1 tψ

)(2 tψ
),( 12111 aa=s

),( 22212 aa=s

),( 32313 aa=s

),( 21 zz=z

Transmitted signal 
alternatives

Received signal at 
matched filter output



Mohamed Khedr5

Signal space

� To form a signal space, first we need to know the 
inner product between two signals (functions):
� Inner (scalar) product:

�Properties of inner product:

�
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Signal space …
� The distance in signal space is measure by calculating the 

norm.
� What is norm?

� Norm of a signal:

� Norm between two signals:

� We refer to the norm between two signals as the Euclidean 
distance between two signals.
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Example of distances in signal space
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Signal space …
� Any arbitrary finite set of waveforms 

where each member of the set is of duration T, can be expressed 
as a linear combination of N orthonogal waveforms            
where         .

where
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Signal space …
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Implementation of matched filter receiver
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Implementation of correlator receiver

),...,,( 21 Nzzz=z

Nj ,...,1=dtttrz j

T

j )()(
0

ψ�=

�
T

0

)(1 tψ

�
T

0

)(tNψ

�
�
�

�

�

�
�
�

�

�

Nr

r

�

1

z=
)(tr

1z

Nz

z

Bank of N correlators

Observation
vector

�
=

=
N

j
jiji tats

1

)()( ψ Mi ,...,1=

MN ≤



Mohamed Khedr12

Example of matched filter receivers using 
basic functions

� Number of matched filters (or correlators) is reduced by 1 compared to using 
matched filters (correlators) to the transmitted signal.
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White noise in orthonormal signal space

� AWGN n(t) can be expressed as

)(~)(ˆ)( tntntn +=

Noise projected on the signal space 
which impacts the detection process.

Noise outside on the signal space 
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Gaussian/Normal

� Normal Distribution:
Completely characterized by 
mean (µ) and variance (σ2)

� Q-function: one-sided tail of 
normal pdf

� erfc(): two-sided tail. 
� So: 
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Normal Distribution: Why?

Uniform distribution
looks nothing like 
bell shaped (gaussian)!
Large spread (σ)!

Sum of r.v.s from a uniform 
distribution after very few samples 
looks remarkably normal

CENTRAL LIMIT TENDENCY!
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Standardize the
Normal Distribution

Xµµµµ

σσσσ

One table!One table!

Normal 
Distribution
Normal 
Distribution

µµµµ = 0

σσσσ    = 1

Z

Z X==== −−−− µµµµ
σσσσ Standardized 

Normal Distribution
Standardized 

Normal Distribution
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Zµµµµ= 0

σσσσ = 1

.12

Z .00 .01

0.0 .0000 .0040 .0080

.0398 .0438

0.2 .0793 .0832 .0871

0.3 .1179 .1217 .1255

Obtaining the Probability

.0478.0478.0478

.02.02

0.10.1 .0478

Standardized Normal 
Probability Table (Portion)
Standardized Normal Standardized Normal 
Probability Table (Portion)Probability Table (Portion)

ProbabilitiesProbabilitiesProbabilities
Shaded area 
exaggerated
Shaded area Shaded area 
exaggeratedexaggerated



Mohamed Khedr18

Example
P(X ≥≥≥≥ 8)

Xµµµµ = 5

σσσσ = 10

8

Normal 
Distribution
Normal Normal 
DistributionDistribution

Standardized 
Normal Distribution

Standardized Standardized 
Normal DistributionNormal Distribution

Z X==== −−−− ==== −−−− ====µµµµ
σσσσ

8 5
10

30.

Zµµµµ = 0

σσσσ = 1

.30

.1179.1179.1179

.5000.5000
.3821.3821.3821

Shaded area exaggeratedShaded area exaggeratedShaded area exaggerated
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Q-function: 
Tail of Normal 

Distribution

Q(z) = P(Z > z) = 1 – P[Z < z]
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Maximum Likelihood (ML) Detection: 
Concepts
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Likelihood Principle

� Experiment:
�Pick Urn A or Urn B at random
�Select a ball from that Urn. 

� The ball is black. 
� What is the probability that the selected Urn is A?
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Likelihood Principle (Contd)

� Write out what you know!
� P(Black | UrnA) = 1/3
� P(Black | UrnB) = 2/3
� P(Urn A) = P(Urn B) = 1/2
� We want P(Urn A | Black).
� Gut feeling: Urn B is more likely than Urn A (given that the ball is black). 

But by how much? 
� This is an inverse probability problem.

� Make sure you understand the inverse nature of the conditional 
probabilities!

� Solution technique: Use Bayes Theorem.
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Likelihood Principle (Contd)
� Bayes manipulations: 
� P(Urn A | Black) = 

� P(Urn A and Black) /P(Black)
� Decompose the numerator and denomenator in terms of the probabilities we know.

� P(Urn A and Black) = P(Black | UrnA)*P(Urn A) 
� P(Black) = P(Black| Urn A)*P(Urn A) + P(Black| UrnB)*P(UrnB) 

� We know all these values Plug in and crank.
� P(Urn A and Black) = 1/3 * 1/2 
� P(Black) = 1/3 * 1/2 + 2/3 * 1/2  = 1/2
� P(Urn A and Black) /P(Black)  = 1/3  = 0.333
� Notice that it matches our gut feeling that Urn A is less likely, once we have seen black.

� The information that the ball is black has CHANGED !
� From P(Urn A) = 0.5 to P(Urn A | Black) = 0.333
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Likelihood Principle

� Way of thinking… 
� Hypotheses: Urn A or Urn B ? 
� Observation: “Black”
� Prior probabilities: P(Urn A) and P(Urn B)
� Likelihood of Black given choice of Urn: {aka forward probability}

� P(Black | Urn A) and P(Black | Urn B)
� Posterior Probability: of each hypothesis given evidence

� P(Urn A | Black) {aka inverse probability}
� Likelihood Principle (informal): All inferences depend ONLY on 

� The likelihoods P(Black | Urn A) and P(Black | Urn B), and 
� The priors P(Urn A) and P(Urn B)

� Result is a probability (or distribution) model over the space of possible hypotheses. 
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Maximum Likelihood (intuition)
� Recall: 
� P(Urn A | Black) = P(Urn A and Black) /P(Black) =

P(Black | UrnA)*P(Urn A) / P(Black)

� P(Urn? | Black) is maximized when P(Black | Urn?) is maximized. 
� Maximization over the hypotheses space (Urn A or Urn B)

� P(Black | Urn?) = “likelihood” 
� => “Maximum Likelihood” approach to maximizing posterior probability
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Maximum Likelihood (ML): mechanics

� Independent Observations (like Black): X1, …, Xn

� Hypothesis θθθθ
� Likelihood Function: L(θ) = P(X1, …, Xn | θ) = Πi P(Xi | θ) 

� {Independence => multiply individual likelihoods}
� Log Likelihood LL(θθθθ) = ΣΣΣΣi log P(Xi | θθθθ) 
� Maximum likelihood: by taking derivative and setting to zero 

and solving for θ

� Maximum A Posteriori (MAP): if non-uniform prior 
probabilities/distributions 
� Optimization function 

P


