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Syllabus

O Tentatively

Week 1

Overview, Probabilities, Random variables, Random
process

Week 2 Wireless channels, Statistical Channel modelling, Path loss
models

Week 3 Cellular concept and system design fundamentals

Week 4 Modulation techniques, single and multi-carrier

Week 5 Demodulation techniques, Diversity techniques

Week 6 Equalization techniques

Week 7 Mid Term exam

Week 8 802.11 and Mac evaluation

Week 9 Energy models in 802.11

Week 10 Wimax and Mac layer

Week 11 Presentations

Week 12 Presentations

Week 13 Presentations

Week 14 Presentations

Week 15 Final Exam
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Signal space

O What is a signal space?

QO Vector representations of signals in an N-dimensional
orthogonal space

O Why do we need a signal space?
Q It 1s a means to convert signals to vectors and vice versa.

Q It 1s a mean to calculate signals energy and Euclidean
distances between signals.

O Why are we interested 1in Euclidean distances between signals?

Q For detection purposes: The received signal 1s transformed
to a received vectors. The signal which has the minimum
distance to the received signal 1s estimated as the
transmitted signal.
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Schematic example of a signal space
w, (1)

s, =(a,,,a,)

(

. . si)=a () +any, () = s =(q,,aq,)
Transmitted signal
alternatives { Sz (t) — azl% (t) + 61221//2 (t) — Sz — (6121, 6122)
$;(1) = a3 W, (1) + a,y, (1) & s; = (ay,ds,)
Z(t) — Z1W1(t)+ Zsz(t) —Z= (Zl,Zz)
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Received signal at
matched filter output




Signal space

0 To form a signal space, first we need to know the
inner product between two signals (functions):

QA Inner (scalar) product:

(o o]

< x(t), y(t) >= j x(t)y" (t)dt

—0Q

= cross-correlation between x(t) and y(t)

Q Properties of inner product:
<ax(t),y(t)>=a<x(),y()>

<x(t),ay(t) >=a <x(t),y(t)>

<x(t)+ y(t),z(t) >=< x(t),z(t) >+ < y(1),z(¢t) >
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Signal space ...

O The distance 1n signal space 1s measure by calculating the
norm.

O What 1s norm?
a Norm of a signal:

|x(0)] = /< x(2), x(2) > = \/ | |x@fa=E,

= “length” of x(t)

Jax(®)] =a|x (@)

0 Norm between two signals:
d,, =|x®)—y@) \
Q We refer to the norm between two signals as the Euclidean
distance between two signals.
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Example of distances in signal space

v, (1)

s, =(a,,,a,)

S, =(ay,ay)
The Euclidean distance between signals z(7) and s(7):

ds,-,z =|ls; (1) — z(t)H — \/(al.l — Z1)2 +(a,, — Z2)2
=123
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Signal space ...

. . . M
O Any arbitrary finite set of waveforms {Si (t )},-21

where each member of the set 1s of duration 7, can be expressed
as a linear combination of N orthonogal waveforms

N
where {% (t )}J.=1 N<M
N .
sl(t):zaij;y](t) 1 =1,....M
j=1 N<M
where
e _ _1__N ______ |
a4 =<s O, 0>=[sopod T 0si<T !
| T .
il 2
S; = (> iy sees Ay ) E; = Z a;
Vector representation of waveform Wavéfcl)rm energy
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Signal space ...

N
Si(t)=Zal.jlﬂj(t) S; = (a1, 85505 Ay )

1
Waveform t]O vector conversion Vector to waveform conversion
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Implementation of matched filter receiver

Bank of N matched filters

l//*l (T —1) —@4— z N Observation

1 | vector

(o) o -z

N
Si(t)zzaijo(t) i=1,...M
j=1

2, =r(t)*y (T—t) j=L..N
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Implementation of correlator receiver

Bank of N correlators

________________________________________________

W, (1)
J‘T Zl —
r
: 1 .

r(1) ° : . | _ i Z Observation
| 0 ' | T2 vector
(el
i 0 | N

N e

s®=Y ay,®) i=lL..M

j=1
Z=12,2ysrTy) @
T

2, = [rew,(dt j=1,..,N
0

1 1 Mohamed Khedr




Example of matched filter receivers using
basic functions

s; (O] s, (1)1 W, ()]
A 1
JT ‘ JT
0 T t
0 T - —A 0 T "
JT
1 matched filter
w,(th
r(t) % _ Z
- ] g
0 Tt

______________________________________________________

O Number of matched filters (or correlators) is reduced by 1 compared to using
matched filters (correlators) to the transmitted signal.
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White noise in orthonormal signal space

0O AWGN n(t) can be expressed as
n(t) :\ﬁ(t)}+fi (1)

Noise projected on the signal space Noise outside on the signal space
which impacts the detection process.

n(t) = Z ny, (t) ' Vector representation of 71(7)
n, =<< n(t),wj(t)> j:l’ ,N ,:> n_(npnz,...,nN)

<n(t W (1) >= 0 e 1,. {i’l 1ndependent zero-mean
\ ( ) 4 ]( ) J Gaussaln random variables with

variance var(n;)=N,/2

—

\'
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Gaussian/Normal

fx(x)
O Normal Distribution: S}
Completely characterized by 7
mean (W) and variance (G?) |

O Q-function: one-sided tail of

normal pdf

P o J. 2y
Q(z) =»(x > 2) = / Y /24y,
2(2) = pl = 7

O erfc(): two-sided tail.

erf(x)
0.5

0.4+

0.3+

0.2+

0.1

a So:

Ci2)i= éerfc (;§>
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Normal Distribution: Why?

‘ ‘ ‘ l l i: Uniform distribution
“ looks nothing like

bell shaped (gaussian)!
! l | | Large spread (0)!

One die

3

(a)
|||l'
T 2 3

(b) Two dice

] . l | l | o CENTRAL LIMIT TENDENCY!

(¢) Three dice

2 3
(d) Fived
2 3

(e) Ten dice

H“Il
4 5 6

| Sum of r.v.s from a uniform
«— distribution after very few samples
““ " looks remarkably normal

FIGURE 2.10. Distribution of average scores from throwing various numbers of dice.
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Normal
Distribution

O

Standardize the
Normal Distribution

Standardized

Normal Distribution

(5:1

X - p=0  Z

One table!
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Obtaining the Probability

Standardized Normal
Probability Table (Portion)

.02 \ c=1
0000|.0040|.008 0478
910398/ 0438 i
0793.0832/.0871

2 u=0 .12 Z
1179|1217 \f25§\ Shaded area

™ Probabilities exaggerated
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Normal

Distribution

. o=10

Z =

Example
P(X = 8)

X—u=8—5
o) 10

- 30

Standardized
Normal Distribution

G=1

2000

: 3821
1179 :

0

e

8 X u=0 .30 Z
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Q-function:
Tail of Normal
Distribution

Qz)=P(Z>2)=1-P|Z < 1z]

1. Areas under the Normal Distribution

.

-

B LD P = O

B B3 B B B = e == = oo o oo
H . ] T . oy
WO oo o e Lad Bd e W 0D =] Onon

e B O

PN
WO oI =1 O N

=]

S

D

A

The table gives the cumulative probability

up to the standardised normal value 2
i z
_L exp(-§2?) di

l.e.

PlI<z2]

0.00

0.5000
0.5398
0.5793
0.6179
0.6554

0.6915
0.7257
0.7580
0.7881
0.8159

0.8413
0.8643
0.8849
0.9032
0.9192

0.9332
0.9452
0.9554
0.9641
0.9713

0.9773
0.9821
0.9861
0.9893
0.9918

0.9938
0.9953
0.9965
0.9974
0.9981

3.00
0.9986

=Jﬂr

=

0.01

0.5040
0.5438
0.5832
0.6217
0.6591

0.6950
0.7291
0.7611
0.7910
0.8186

0.8438
0.8665
0.8869
0.9049
0.9207

0.9345
0.9463
0.9564
0.9649
0.9719

0.9778
0.9826
0.9865
0.989%
0.9920

0.9940
0.9955
0.9966
0.9975
0.9982

3.10
0.99%0

0.02

0.5080
0.5478
0.5871
0.6255
0.6628

0.6985
0.7324
0.7642
0.7939
0.8212

0.8461
0.8686
0.8888
0.9066
0.9222

0.9357
0.9474
0.9573
0.9656
0.9726

0.9783
0.9830
0.9868
0.9898
0.9922

0.9941
0.9956
0.9967
0.9976
0.9982

3.20
0.9993

0.03

0.5120
0.5517
0.5910
0.6293
0.6664

0.7019
0.7357
0.7673
0.7967
0.8238

0.8485
0.8708
0.8907
0.9082
0.9236

0.9370
0.9484
0.9582
0.9664
0.9732

0.9788
0.9834
0.9871
0.9901
0.9924

0.9943
0.9957
0.9968
0.9977
0.9983

3.30
0.9995

S

P[I<t]

/i

0.04

0.5159
0.5557
0.5948
0.6331
0.6700

0.7054
0.7389
0.7704
0.7995
0.8264

0.8508
0.8729
0.8925
0.9099
0.9251

0.9382
0.9495
0.9591
0.9671
0.9738

0.9793
0.9838
0.9874
0.9904
0.9927

0.9945
0.9959
0.9969
0.9977
0.9984

3.40
0.9997

0.05

0.5199
0.5596
0.5987
0.6368
0.6736

0.7088
0.7422
0.7734
0.8023
0.8289

0.8531
0.8749
0.8944
0.9115
0.9265

0.9394
0.9505
0.9599
0.9678
0.9744

0.9798
0.9842
0.9878
0.9906
0.9929

0.9946
0.9960
0.9970
0.9978
0.9984

3.50
0.9998

0.06

0.5239
0.5636
0.6026
0.6406
0.6772

0.7123
0.7454
0.7764
0.8051
0.8315

0.8554
0.8770
0.8962
0.9131
0.9279

0.9406
0.9515
0.9608
0.9686
0.9750

0.9803
0.9846
0.9881
0.9909
0.9931

0.9948
0.9961
0.9971
0.9979
0.9985

3.60
0.9998

0.07

0.5279
0.5675
0.6064
0.6443
0.6808

0.7157
0.7486
0.7794
0.8078
0.8340

0.8577
0.8790
0.8980
0.9147
0.9292

0.9418
0.9525
0.9616
0.9693
0.9756

0.9808
0.9850
0.9884
0.9911
0.9932

0.9949
0.9962
0.9972
0.9980
0.9985

3.70
0.99%9

z
0.08

0.5319
0.5714
0.6103
0.6480
0.6844

0.7190
0.7517
0.7823
0.8106
0.8365

0,8599
0.8804
0.8997
0.9162
0.9306

0.9429
0.9535
0.9625
0.9699
0.9761

0.9812
0.9854
0,9887
0.9913
0.9934

0.9951
0.9963
0.9973
0.9980
0.9986

3.80
0.9999

0.09

0.5359
0.5753
0.6141
0.6517
0.6879

0.7224
0.7549
0.7854
0.8133
0.8389

0.8621
0.8830
0.9015
0.9177
0.9319

0.9441
0.9545
0.9633
0.9706
0.9767

0.9817
0.9857
0.98%0
0.9916
0.9936

0.9952
0.9964
0.9974
0.9981
0.9986

3.90
1.0000




Maximum Likelihood (ML) Detection:
Concepts
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Likelihood Principle

O L 1 1@

O Experiment:
A Pick Urn A or Urn B at random
a Select a ball from that Urn.
a The ball 1s black.
O What 1s the probability that the selected Urn 1s A?
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Likelihood Principle (Contd)

00 (Y Yo

Write out what you know!
P(Black | UrnA) =1/3
P(Black | UrnB) = 2/3
P(Urm A)=P(Urn B) =1/2
We want P(Urn A | Black).

Gut feeling: Urn B is more likely than Urn A (given that the ball is black).
But by how much?

This is an inverse probability problem.

O Make sure you understand the inverse nature of the conditional
probabilities!

Solution technique: Use Bayes Theorem.

22 Mohamed Khedr




(M

O U0 0D (M

(M

Likelihood Principle (Contd)

Bayes manipulations:
P(Urn A | Black) =
O P(Urn A and Black) /P(Black)
Decompose the numerator and denomenator in terms of the probabilities we know.

P(Urn A and Black) = P(Black | UrnA)*P(Urn A)
P(Black) = P(Blackl Urn A)*P(Urn A) + P(Blackl UrnB)*P(UrnB)

We know all these values Plug in and crank.
P(Urn A and Black) =1/3 * 1/2

P(Black) =1/3 *1/2 +2/3*1/2 =1/2

P(Urn A and Black) /P(Black) =1/3 =0.333

Notice that it matches our gut feeling that Urn A is less likely, once we have seen black.

The information that the ball is black has CHANGED !
O From P(Urn A) = 0.5 to P(Urn A | Black) = 0.333
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Likelihood Principle

™ Pl
@O Q

Way of thinking...
Hypotheses: Urn A or Urn B ?
Observation: “Black™
Prior probabilities: P(Urn A) and P(Urn B)
Likelihood of Black given choice of Urn: {aka forward probability}
Q P(Black | Urn A) and P(Black | Urn B)
Posterior Probability: of each hypothesis given evidence
Q P(Urn A | Black) {aka inverse probability}
Likelihood Principle (informal): All inferences depend ONLY on
A The likelihoods P(Black | Urn A) and P(Black | Urn B), and
Q The priors P(Urn A) and P(Urn B)
Result is a probability (or distribution) model over the space of possible hypotheses.
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Maximum Likelihood (intuition)

Recall:
P(Urn A | Black) = P(Urn A and Black) /P(Black) =
P(Black | UrnA)*P(Urn A) / P(Black)

P(Urn? | Black) is maximized when P(Black | Urn?) is maximized.
O Maximization over the hypotheses space (Urn A or Urn B)

P(Black | Urn?) = “likelihood”

=> “Maximum Likelihood’ approach to maximizing posterior probability
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Maximum Likelihood (ML): mechanics

0 Independent Observations (like Black): X, ..., X

0 Hypothesis 0

0 Likelihood Function: L(0) = P(X,, ..., X 10) =1L P(X.| 0)
Q {Independence => multiply individual likelihoods }

0 Log Likelihood LL(0) = X, log P(X, 1 0)

n
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