EC 744 Wireless Communications Spring 2007

Mohamed Essam Khedr Department of Electronics and Communications

Digital Demodulation Techniques

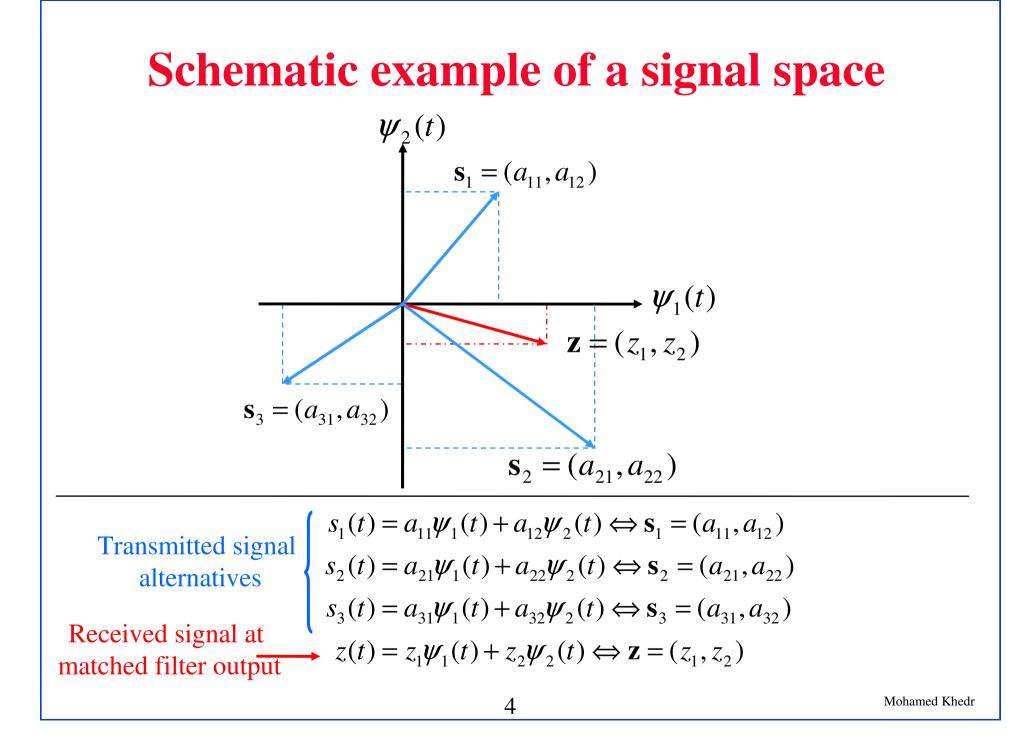
WWW.aast.edu/~khedr/Courses

1

	Week 1	Overview, Probabilities, Random variables, Random process	
Syllabus	Week 2	Wireless channels, Statistical Channel modelling, Path models	loss
	Week 3	Cellular concept and system design fundamentals	
	Week 4	Modulation techniques, single and multi-carrier	
Tentatively	Week 5	Demodulation techniques, Diversity techniques	
	Week 6	Equalization techniques	
	Week 7	Mid Term exam	
	Week 8	802.11 and Mac evaluation	
	Week 9	Energy models in 802.11	
	Week 10	Wimax and Mac layer	
	Week 11	Presentations	
	Week 12	Presentations	
	Week 13	Presentations	
	Week 14	Presentations	
	Week 15	Final Exam	
		2	Mohamed Khe

Signal space

- □ What is a signal space?
 - Vector representations of signals in an N-dimensional orthogonal space
- □ Why do we need a signal space?
 - □ It is a means to convert signals to vectors and vice versa.
 - □ It is a mean to calculate signals energy and Euclidean distances between signals.
- Why are we interested in Euclidean distances between signals?
 For detection purposes: The received signal is transformed to a received vectors. The signal which has the minimum distance to the received signal is estimated as the transmitted signal.



Signal space

To form a signal space, first we need to know the <u>inner product</u> between two signals (functions):

□ Inner (scalar) product:

$$\langle x(t), y(t) \rangle = \int_{-\infty}^{\infty} x(t) y^{*}(t) dt$$

= cross-correlation between x(t) and y(t)

□ Properties of inner product: < ax(t), y(t) >= a < x(t), y(t) > $< x(t), ay(t) >= a^* < x(t), y(t) >$ < x(t) + y(t), z(t) >=< x(t), z(t) > + < y(t), z(t) >

Signal space ...

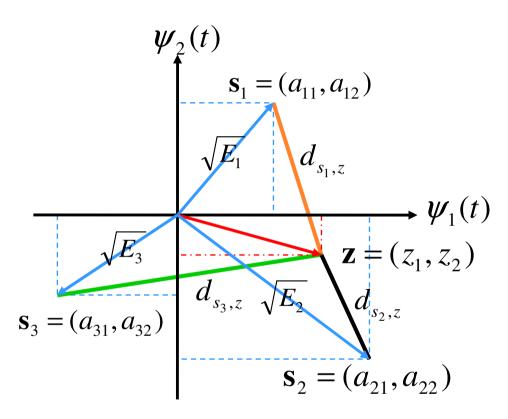
- The distance in signal space is measure by calculating the norm.
- □ What is norm?
 - □ Norm of a signal:

$$\|x(t)\| = \sqrt{\langle x(t), x(t) \rangle} = \sqrt{\int_{-\infty}^{\infty} |x(t)|^2 dt} = \sqrt{E_x}$$

= "length" of x(t)
 $\|ax(t)\| = |a| \|x(t)\|$

- □ Norm between two signals: $d_{x,y} = ||x(t) - y(t)||$
- We refer to the norm between two signals as the <u>Euclidean</u> <u>distance</u> between two signals.

Example of distances in signal space



The Euclidean distance between signals z(t) and s(t):

$$d_{s_i,z} = \|s_i(t) - z(t)\| = \sqrt{(a_{i1} - z_1)^2 + (a_{i2} - z_2)^2}$$

i = 1,2,3

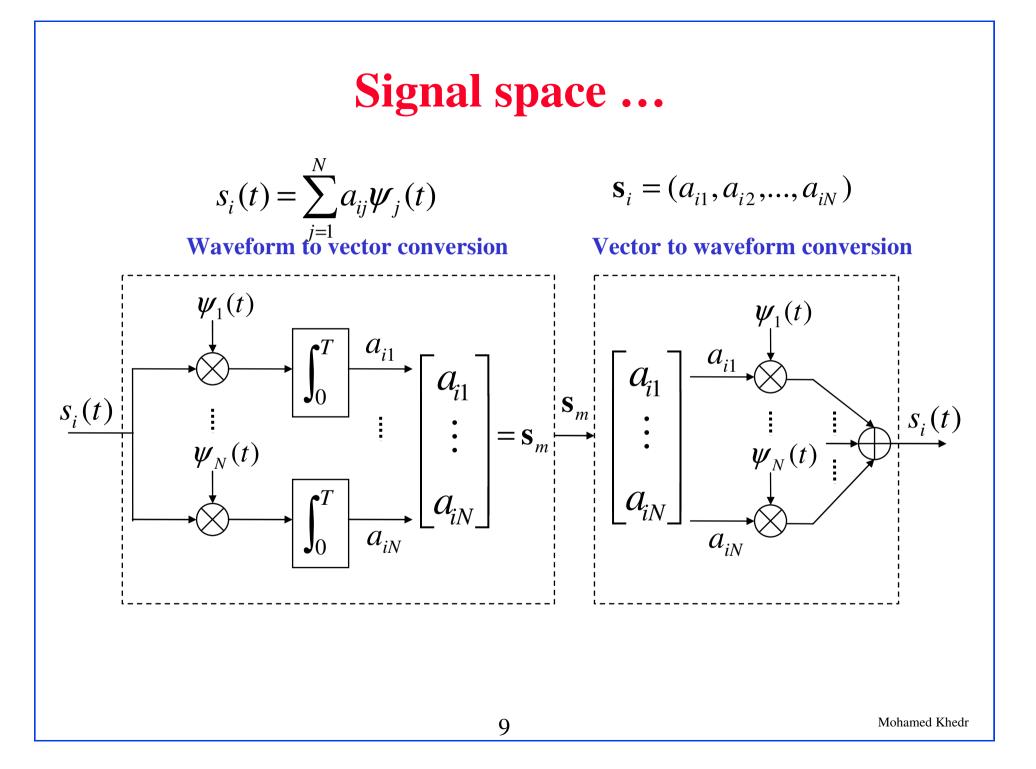
Signal space ...

■ Any arbitrary finite set of waveforms $\{s_i(t)\}_{i=1}^{M}$ where each member of the set is of duration *T*, can be expressed as a linear combination of N orthonogal waveforms where $\{\Psi_j(t)\}_{j=1}^{N}$ $N \le M$

$$s_i(t) = \sum_{j=1}^N a_{ij} \psi_j(t) \qquad \begin{array}{l} i = 1, \dots, M \\ N \le M \end{array}$$

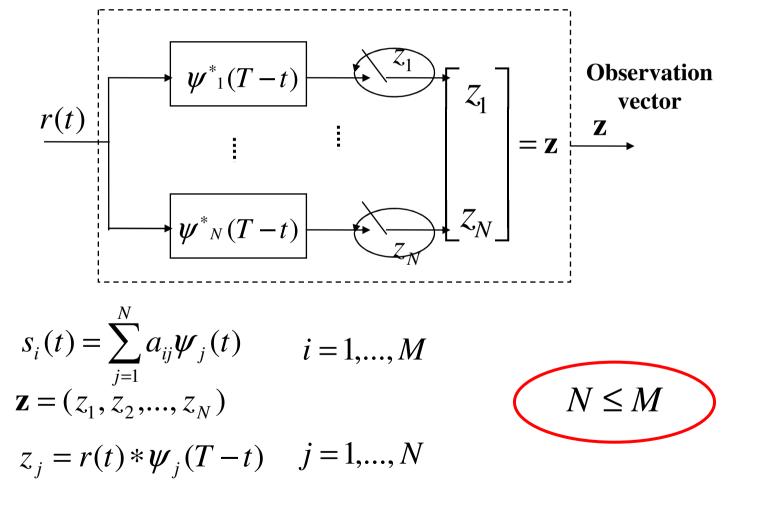
where

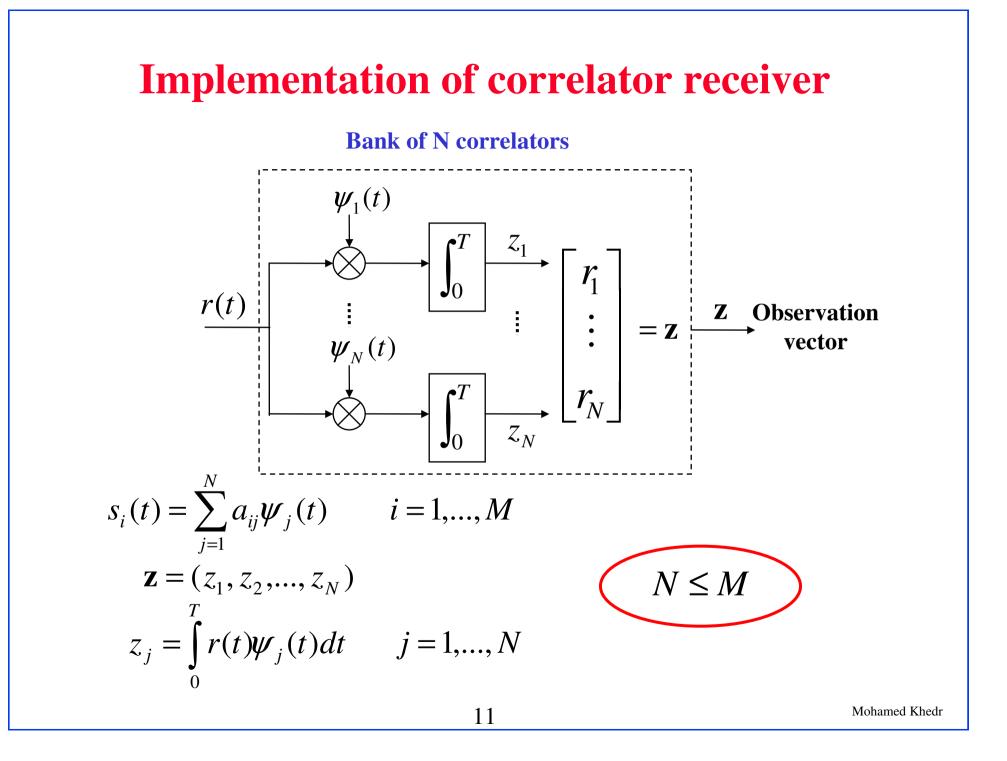
$$a_{ij} = \langle s_i(t), \psi_j(t) \rangle = \int_0^T s_i(t) \psi_j^*(t) dt \qquad \begin{array}{l} j = 1, \dots, N \\ i = 1, \dots, M \end{array} \quad 0 \le t \le T \\ \mathbf{s}_i = (a_{i1}, a_{i2}, \dots, a_{iN}) \\ \text{Vector representation of waveform} \end{array} \qquad \begin{bmatrix} E_i = \sum_{j=1}^N \left| a_{ij} \right|^2 \\ \text{Waveform energy} \end{bmatrix}$$

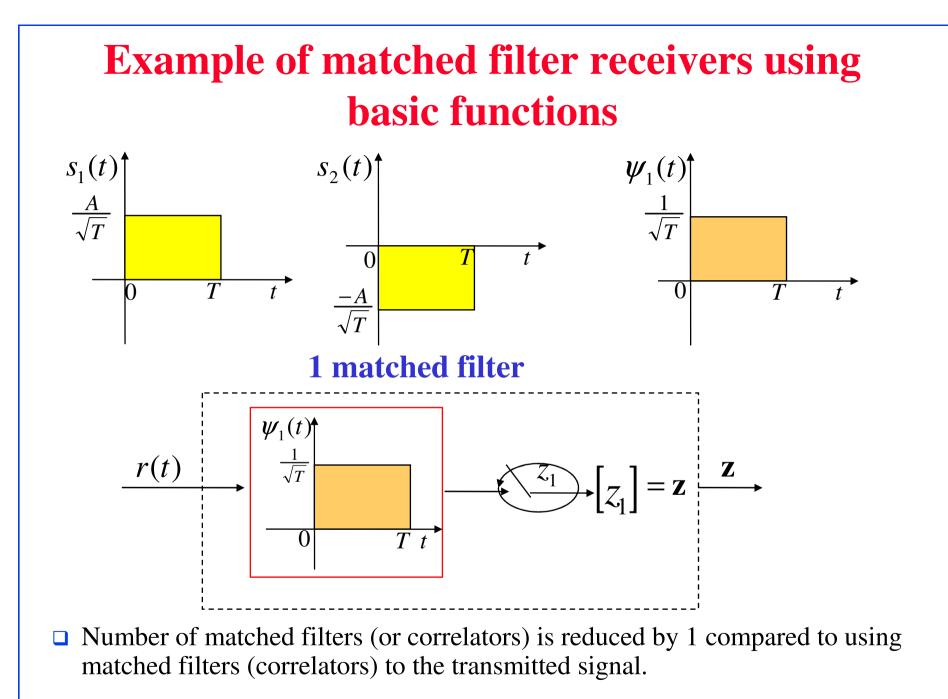


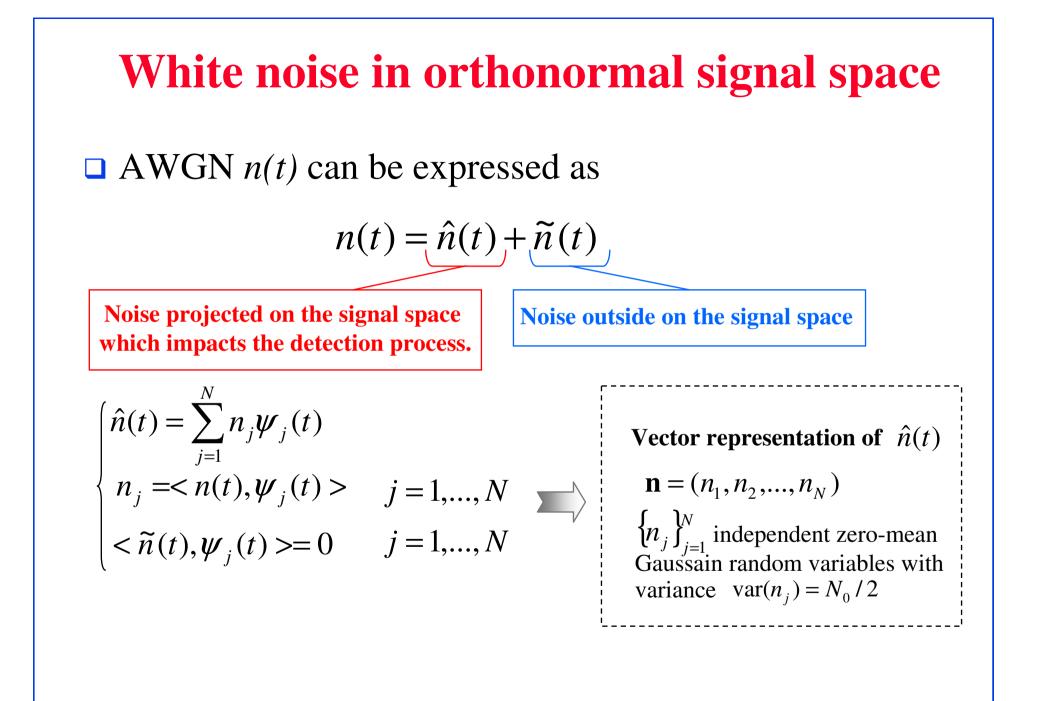
Implementation of matched filter receiver

Bank of N matched filters









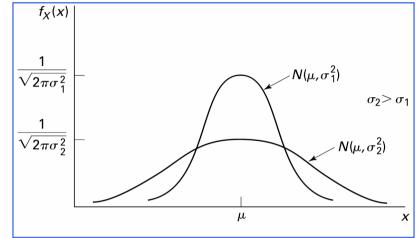
Gaussian/Normal

14

Normal Distribution:

Completely characterized by mean (μ) and variance (σ^2)

Q-function: one-sided tail of normal pdf

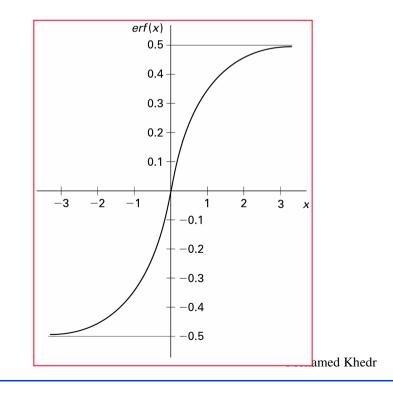


$$Q(z) \stackrel{\triangle}{=} p(x > z) = \int_z^\infty \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.$$

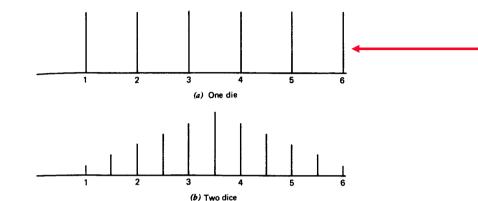
• erfc(): two-sided tail.

So:

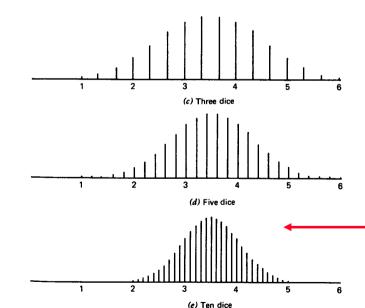
$$Q(z) = \frac{1}{2} \mathrm{erfc}\left(\frac{z}{\sqrt{2}}\right)$$



Normal Distribution: Why?

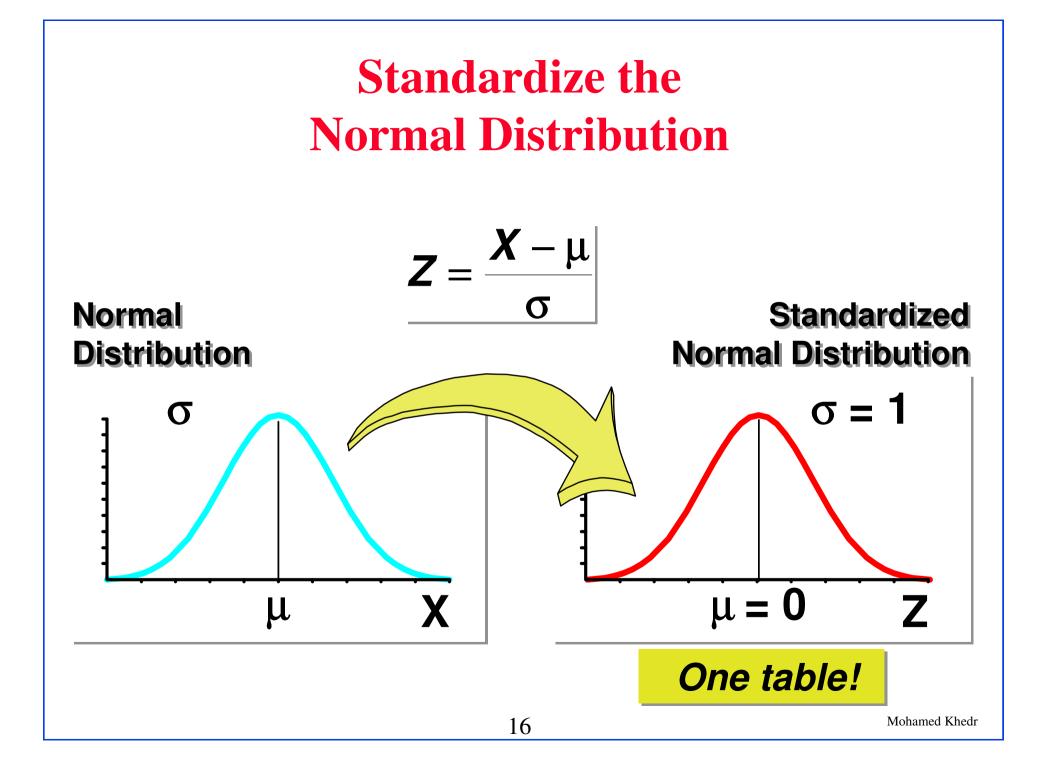


Uniform distribution looks <u>nothing</u> like bell shaped (gaussian)! Large spread (σ)!



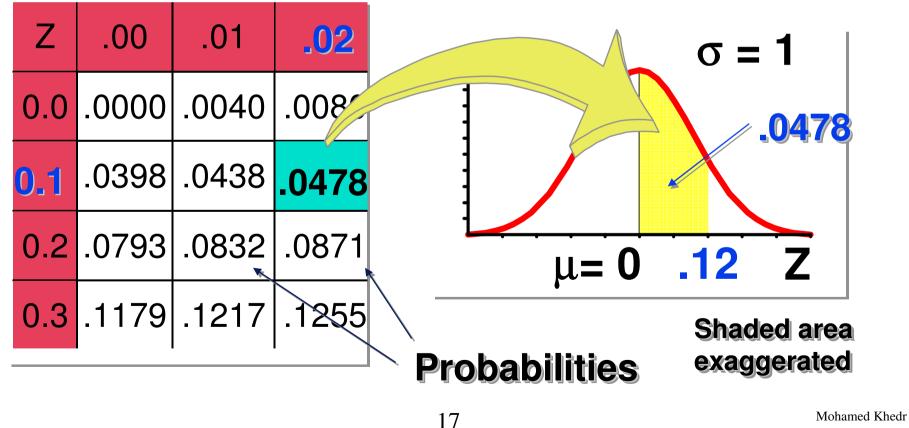
CENTRAL LIMIT TENDENCY!

<u>Sum of r.v.s</u> from a uniform distribution after <u>very few</u> samples looks remarkably normal

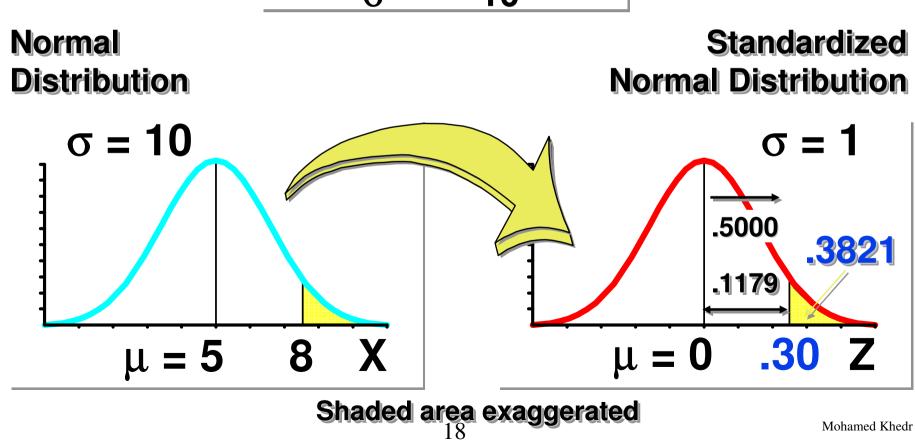


Obtaining the Probability

Standardized Normal Probability Table (Portion)



Example $P(X \ge 8)$ $Z = \frac{X - \mu}{\sigma} = \frac{8 - 5}{10} = .30$ Store



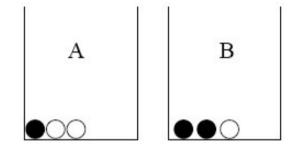
Q-function: Tail of Normal Distribution

$$Q(z) = P(Z > z) = 1 - P[Z < z]$$

. A1	ceas u	nder t	he No	rmal I	Distri	butio	n			
	The table	gives th	e cumulat	ive proba	bility			4		
	up to the	standard	ised norm	al value	Z			λ		
	i.e.	Z	. 1 - 2				1//	$V \wedge I$	P[Z < z]
		$1 - \frac{1}{12}$	_exp(-½22 π) az			1//	V/λ	. A	
	P[Z < z] =] /2	x			1	////	///	X	
						1	////	(///		
					-1	111	111	1///	1 -	-
								0	Z	
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.0
0.0	0.5000	0.5040	0.5080	0.5120	0.5159	0.5199	0.5239	0.5279	0.5319	0.535
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.575
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.614
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.651
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.722
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.785
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.813
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.838
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.862
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8804	0.883
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.901
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.917
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.944
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.954
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.963
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.970
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.976
2.0	0.9773	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.981
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.985
2.2	0.9861	0.9865	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.989
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.991
2.4	0.9918	0.9920	0.9922	0.9924	0.9927	0.9929	0.9931	0.9932	0.9934	0.993
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.995
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.996
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.997
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9980	0.9980	0.998
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.998
Z	3.00	3.10	3.20	3.30	3.40	3.50	3.60	3.70	3.80	3.90
P	0.9986	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.000

Maximum Likelihood (ML) Detection: Concepts

Likelihood Principle



Experiment:

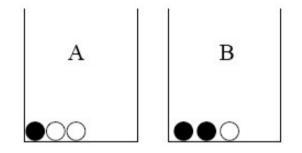
□ Pick Urn A or Urn B at random

□ Select a ball from that Urn.

□ The ball is black.

□ What is the probability that the selected Urn is A?

Likelihood Principle (Contd)

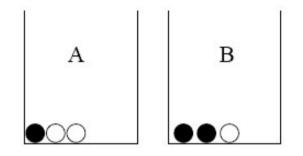


- □ Write out what you know!
- $\Box P(Black | UrnA) = 1/3$
- $\Box P(Black | UrnB) = 2/3$
- **D** P(Urn A) = P(Urn B) = 1/2
- □ We want **P**(**Urn A** | **Black**).
- □ Gut feeling: Urn B is more likely than Urn A (given that the ball is black). But by how much?
- □ This is an <u>inverse probability</u> problem.
 - Make sure you understand the inverse nature of the conditional probabilities!
- □ Solution technique: Use Bayes Theorem.

Likelihood Principle (Contd)

- **Bayes manipulations:**
- $\Box \quad P(Urn A \mid Black) =$
 - **P(Urn A and Black) /P(Black)**
- Decompose the numerator and denomenator in terms of the probabilities we know.
- □ P(Urn A and Black) = P(Black | UrnA)*P(Urn A)
- $\square P(Black) = P(Black| Urn A)*P(Urn A) + P(Black| UrnB)*P(UrnB)$
- We know all these values Plug in and crank.
- **P**(Urn A and Black) = 1/3 * 1/2
- **D** P(Black) = 1/3 * 1/2 + 2/3 * 1/2 = 1/2
- **D** P(Urn A and Black) /P(Black) = 1/3 = 0.333
- □ Notice that it matches our gut feeling that Urn A is less likely, once we have seen black.
- □ <u>The information that the ball is black has CHANGED !</u>
 - □ From P(Urn A) = 0.5 to P(Urn A | Black) = 0.333

Likelihood Principle



- □ Way of thinking...
- □ <u>Hypotheses</u>: Urn A or Urn B ?
- Observation: "Black"
- □ <u>Prior probabilities</u>: P(Urn A) and P(Urn B)
- Likelihood of Black given choice of Urn: {aka *forward probability*}
 - □ P(Black | Urn A) and P(Black | Urn B)
- <u>Posterior Probability:</u> of each hypothesis given evidence
 - □ P(Urn A | Black) {aka *inverse probability*}
- Likelihood Principle (informal): All inferences depend ONLY on
 - □ The likelihoods P(Black | Urn A) and P(Black | Urn B), and
 - □ The priors P(Urn A) and P(Urn B)
- Result is a probability (or distribution) model over the space of possible hypotheses.

Maximum Likelihood (intuition)

- **Recall:**
- P(Urn A | Black) = P(Urn A and Black) /P(Black) = P(Black | UrnA)*P(Urn A) / P(Black)
- P(Urn? | Black) is maximized when P(Black | Urn?) is maximized.
 Maximization over the hypotheses space (Urn A or Urn B)
- □ **P(Black | Urn?) =** "likelihood"
- □ => "*Maximum Likelihood*" approach to maximizing posterior probability

Maximum Likelihood (ML): mechanics

- □ Independent Observations (like Black): X₁, ..., X_n
- **Ηypothesis θ**
- **Likelihood Function**: $L(\theta) = P(X_1, ..., X_n | \theta) = \prod_i P(X_i | \theta)$
 - \[Independence => multiply individual likelihoods \]
- **Log Likelihood LL**(θ) = $\Sigma_i \log P(X_i | \theta)$