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Chapter 6

Passband Data Transmission
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Figure 6.1

lllustrative waveforms for the three basic forms of
signaling binary information. (a) Amplitude-shift keying.
(b) Phase-shift keying. (¢) Frequency-shift keying with
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Figure 6.2
Functional model of passband data
transmission system.
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Figure 6.3
Signal-space diagram for coherent binary PSK system.

The waveforms depicting the transmitted signals s, (1)
and s,(f), displayed in the inserts, assume n_ = 2.
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Figure 6.4

Block diagrams for (a) binary PSK transmitter
and (b) coherent binary PSK receiver.
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Figure 6.5
Power spectra of binary PSK and FSK signals.
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Figure 6.6

Signal-space diagram of coherent QPSK

system.
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Figure 6.7

(a) Input binary sequence. (b) Odd-numbered bits of input
sequence and associated binary PSK wave. (¢) Even-
numbered bits of input sequence and associated binary PSK

wave. (d) QPSK waveform defined as s(f) = s;, @, () + S, 9,(1).
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Figure 6.9
Power spectra of QPSK and MSK signals.
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The two QPSK constellations. Note that they differ by /4. When going from (1,1)
to (-1, -1), the phase is shifted by n. When going from (1, -1) to (1,1), the phase
shifts by /2. Thus, depending on the incoming symbol, transitions from (1,1) can
occur to (1,1), (1,-1), (-1, 1),

or (-1, -1) or vice versa, leading to phase shifts of 0, + 1 /2, or £ nin QPSK. | and Q
represent the in-phase and quadrature bits, respectively. Arrows show all possible
transitions.
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The pairing of bits to form symbols.
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Figure 3.36. Explanation of the phase shifts observed in QPSK,
indicating the phases of the symbols and the phase difference
between symbols.

What happens to the phase at intervals of 2T in QPSK?
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Figure 6.10

Possible paths for switching between the
message points in (a) QPSK and (b)

offset QPSK.
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Block diagram of the OQPSK modulator.

Duration 27 | Delay
Even 4
NRZ data _ cos(2nfyt)
41 Serial to
> parallel
Duration T (S/P)
sin(2nfyt)
Odd
Duration 2T "X

©2000, John Wiley & Sons, Inc.
Haykin/Communication Systems, 4th Ed

-
-

|, OQPSK

waveform

L
o




Explanation of the phase transitions in OQPSK.

What happens to the phase at intervals of Tin OQPSK

‘ 1 -1 ‘ —1 1
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At (1), the symbols are (1, 1) and (-1, 1): The phase change is +m/2.

At (2), the symbols are (-1, 1) and (-1, —=1): The phase change is /2.

At (3), the symbols are (-1, —1) and (-1, —=1): The phase change is 0.

At (4), the symbols are (-1, —=1) and (-1, 1): The phase change is +n/2, and so on.
Thus in OQPSK, the phase changes are limited to 0 or £r/2.
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Figure 6.11

Two commonly used signal constellations of QPSK; the
arrows indicate the paths along which the QPSK
modulator can change its state.
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Figure 6.12

Eight possible phase states for the 7/4-
shifted QPSK modulator.
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Phase encoding for n /4-QPSK. The brackets [ ] and { } correspond
to the two respective constellations.
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Details of the phase constellation L1
associated with n/4-QPSK. For every

alternate symbol, the carrier waves

are changed. From (1,1) to (-1, -1),

we go from [1 1] to {-1, -1}, or from

{1,1} to [-1, -1], resulting in a phase

[-11]

{11}

3 /4, as opposed to r7/2 in QPSK. In

QPSK we can go from [1, 1] to [-1, -1]

or from {1 1} to

{-1, -1}, resujting in a phase change

of n. Also, when we go from (1, 1) -1 1)

to (1, 1) in 1/4-QPSK, we go from [1,

1] to {1, 1}, resulting in a phase

change of n/4. The phase changes in
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Block diagram of the n /4-DQPSK transmitter.
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Figure 6.13

Block diagram of the #7/4-shifted DQPSK
detector.
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Figure 6.14

lllustrating the possibility of phase angles
wrapping around the positive real axis.
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Figure 6.16

Power spectra of M-ary PSK signals for M
=2,4,8.
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Figure 6.17
(a) Signal-space diagram of M-ary QAM for M = 16; the
message points in each quadrant are identified with Gray-
encoded quadbits. (b) Signal-space diagram of the

corresponding 4-PAM signal.
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Figure 6.25

Signal-space diagram for binary FSK system. The diagram
also includes two inserts showing example waveforms of
the two modulated signals s;(f) and s,(1).
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Block diagrams
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Figure 6.27

Phase tree of
CFM. "
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Figure 6.28

Phase trellis; boldfaced path represents
the sequence 1101000.
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Block diagrams
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Figure 6.36

Power spectra of M-ary FSK
signals for M= 2, 4, 8.
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Noncoherent
receivers.

(a) Quadrature
receiver using
correlators.

(b) Quadrature
receiver using
matched filters.
(c) Noncoherent
matched filter.
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Figure 6.38

. Output of matched
filter for a

] rectangular RF

| . wave: (a) =0, and

" | (b) 6= 180
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(a) Generalized binary
receiver for
noncoherent
orthogonal
modulation.

(b) Quadrature
receiver equivalent to
either one of the two
matched filters in part
(a); theindex i1=1, 2.
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Figure 6.42

Noncoherent receiver for the detection of
binary FSK signals.
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Figure 6.44

Signal-space diagram of received DPSK

signal.
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