EC 7xx Advanced Digital Communications Spring 2008

Mohamed Essam Khedr Department of Electronics and Communications

Random Process and Optimum Detection

http://webmail.aast.edu/~khedr

	Week 1	Overview, Probabilities, Random variables
Syllabus	Week 2	Random Process, Optimum Detection
	Week 3	
	Week 4	
Tentatively	Week 5	
	Week 6	
	Week 7	
	Week 8	
	Week 9	
	Week 10	
	Week 11	
	Week 12	
	Week 13	
	Week 14	
	Week 15	
		2 Mohamed Khed

Random Sequences and Random Processes

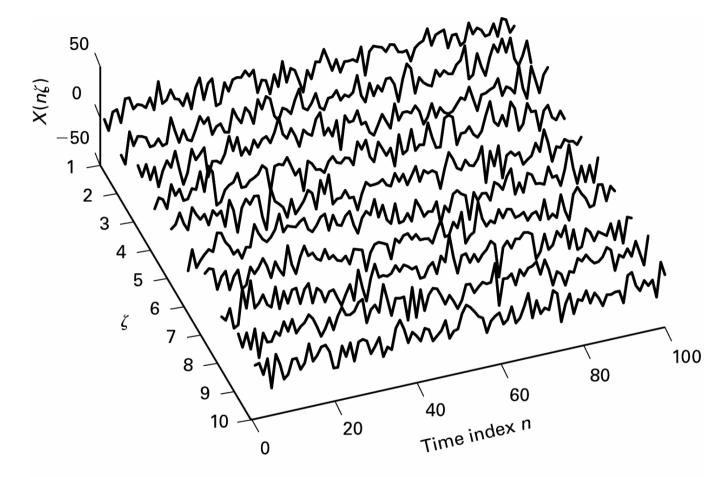
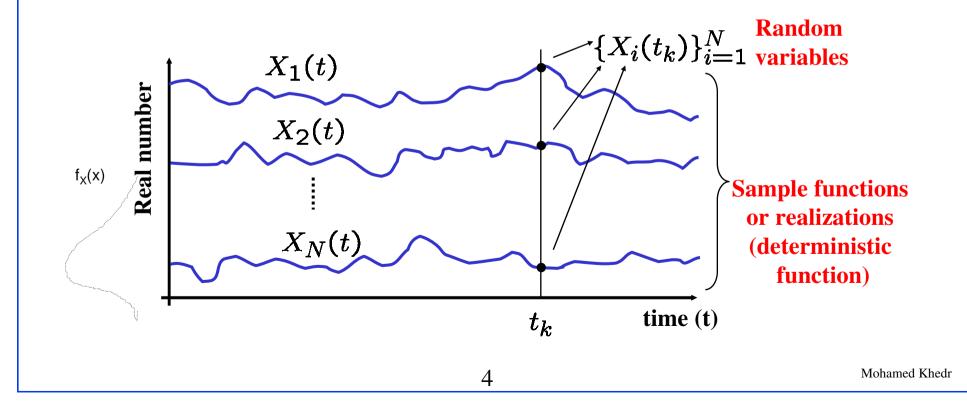


Illustration of the concept of *random sequence* $X(n, \zeta)$ where the ζ domain (i.e., the sample space Ω) consists of just 10 values. (Samples connected for plot.)

Random process

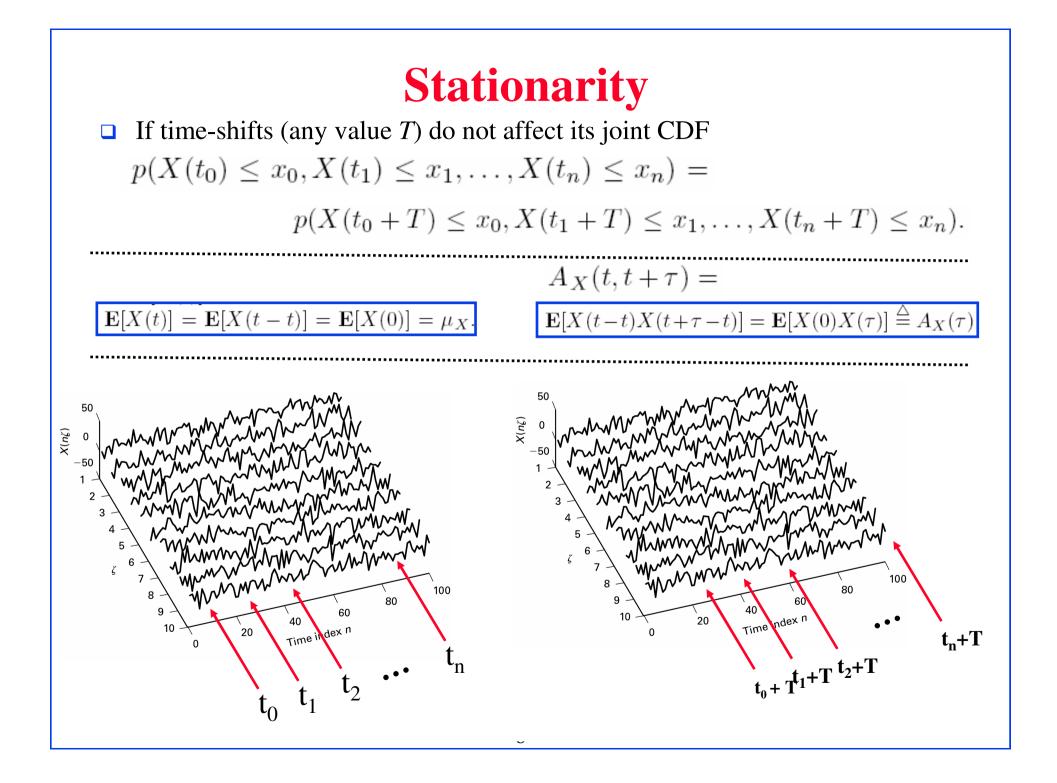
 A random process is a collection of time functions, or signals, corresponding to various outcomes of a random experiment. For each outcome, there exists a deterministic function, which is called a sample function or a realization.



Specifying a Random Process

• A random process is defined by all its joint CDFs $p(X(t_0) \le x_0, X(t_1) \le x_1, \dots, X(t_n) \le x_n).$

for <u>all possible sets of sample times</u> $\{t_0, t_1, \ldots, t_n\}$ 50 $X(n\zeta)$ -50 www. 100 8 80 9 60 40 10 Time index n ٥ 'n ι_2 t_1 t_0



Wide Sense Stationarity (wss)

 $A_X(t,t+\tau) =$

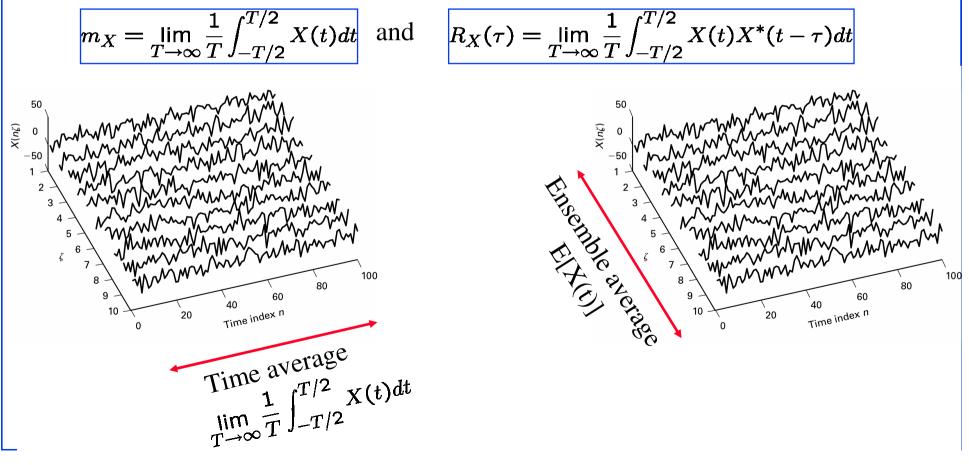
 $\mathbf{E}[X(t)] = \mathbf{E}[X(t-t)] = \mathbf{E}[X(0)] = \mu_X.$

 $\mathbf{E}[X(t-t)X(t+\tau-t)] = \mathbf{E}[X(0)X(\tau)] \stackrel{\triangle}{=} A_X(\tau)$

- □ Keep only above two properties (2nd order stationarity)...
 - Don't insist that higher-order moments or higher order joint CDFs be unaffected by lag T
- □ With LTI systems, we will see that WSS inputs lead to WSS outputs,
 - □ In particular, if a WSS process with PSD $S_X(f)$ is passed through a linear timeinvariant filter with frequency response H(f), then the filter output is also a WSS process with power spectral density $|H(f)|^2S_X(f)$.
- □ Gaussian *w.s.s.* = Gaussian stationary process (since it only has 2nd order moments)

Ergodicity

- □ Time averages = Ensemble averages
- [i.e. "<u>ensemble</u>" averages like mean/autocorrelation can be computed as "<u>time-</u> <u>averages</u>" over a <u>single</u> realization of the random process]
- A random process: ergodic in *mean* and *autocorrelation* (like w.s.s.) if



Autocorrelation: Summary

□ Autocorrelation of an energy signal

$$R_x(\tau) = x(\tau) \star x^*(-\tau) = \int_{-\infty}^{\infty} x(t) x^*(t-\tau) dt$$

□ Autocorrelation of a power signal

$$R_{x}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^{*}(t-\tau) dt$$

□ For a periodic signal:

$$R_x(\tau) = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) x^*(t-\tau) dt$$

□ Autocorrelation of a random signal

$$R_X(t_i, t_j) = \mathsf{E}[X(t_i)X^*(t_j)]$$

□ For a WSS process:

$$R_X(\tau) = \mathsf{E}[X(t)X^*(t-\tau)]$$

Power Spectral Density (PSD)

The power spectral density (PSD) of a WSS process is defined as the Fourier transform of its autocorrelation function with respect to τ :

$$S_X(f) = \int_{-\infty}^{\infty} A_X(\tau) e^{-j2\pi f\tau} d\tau.$$
 (B.26)

The autocorrelation can be obtained from the PSD through the inverse transform:

$$A_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{j2\pi f\tau} df.$$
(B.27)

The PSD takes its name from the fact that the expected power of a random process X(t) is the integral of its PSD:

$$\mathbf{E}[X^{2}(t)] = A_{X}(0) = \int_{-\infty}^{\infty} S_{X}(f) df,$$
(B.28)

1. $S_X(f)$ is real and $S_X(f) \ge 0$ 2. $S_X(-f) = S_X(f)$ 3. $A_X(0) = \int S_X(\omega) d\omega$

Mohamed Khedr

Spectral density: Summary

Energy signals:

 $E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df \quad X(f) = \mathcal{F}[x(t)]$

□ Energy spectral density (ESD):

$$\Psi_x(f) = |X(f)|^2$$

Power signals:

$$P_x = \frac{1}{T_0} \int_{T_0/2}^{T_0/2} |x(t)|^2 dt = \sum_{n=-\infty}^{\infty} |c_n|^2 \qquad \{c_n\} = \mathcal{F}[x(t)]$$

Power spectral density (PSD):

$$G_x(f) = \sum_{n=-\infty}^{\infty} |c_n|^2 \delta(f - nf_0) \qquad f_0 = 1/T_0$$

Random process:

□ Power spectral density (PSD):

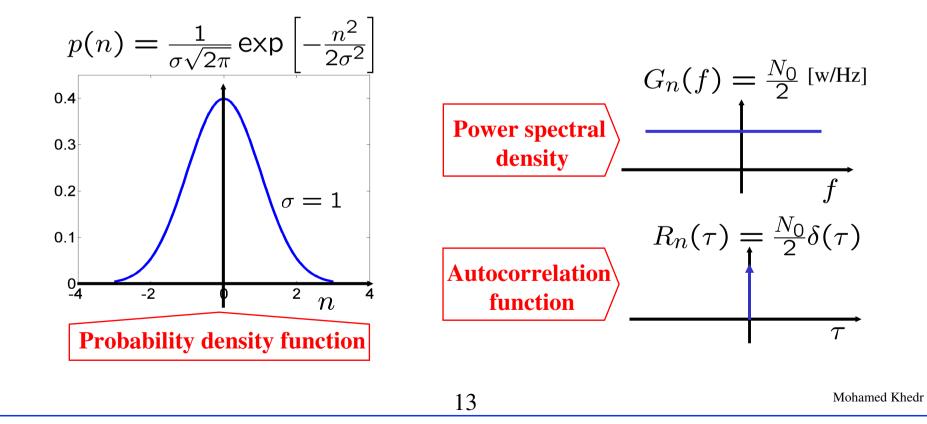
$$G_X(f) = \mathcal{F}[R_X(\tau)]$$

Properties of an autocorrelation function

- □ For real-valued (and WSS for random signals):
 - 1. Autocorrelation and spectral density form a Fourier transform pair. $R_X(\tau) \leftrightarrow S_X(\omega)$
 - 2. Autocorrelation is symmetric around zero. $R_X(-\tau) = R_X(\tau)$
 - 3. Its maximum value occurs at the origin. $|R_X(\tau)| \le R_X(0)$
 - 4. Its value at the origin is equal to the average power or energy. $\mathbf{E}[X^2(t)] = A_X(0) = \int_{-\infty}^{\infty} S_X(f) df,$

Noise in communication systems

- Thermal noise is described by a zero-mean Gaussian random process, n(t).
- □ Its PSD is flat, hence, it is called white noise. IID gaussian.



White Gaussian Noise

□ White:

- Power spectral density (PSD) is the same, i.e. <u>flat</u>, for all frequencies of interest (from dc to 10¹² Hz)
- Autocorrelation is a <u>delta</u> function => two samples no matter however close are uncorrelated.
 - \Box N₀/2 to indicate two-sided PSD
 - \Box Zero-mean gaussian completely characterized by its variance (σ^2)

□ Variance of filtered noise is finite = $N_0/2$

- Similar to "white light" contains equal amounts of all frequencies in the visible band of EM spectrum
- $\Box Gaussian + uncorrelated => i.i.d.$
 - □ Affects each symbol independently: memoryless channel
- Practically: if b/w of noise is much larger than that of the system: good enough

Signal transmission w/ linear systems (filters)

Input
$$\begin{array}{c} x(t) \\ X(f) \end{array} \xrightarrow{h(t)} H(f) \\ H(f) \end{array} \xrightarrow{y(t)} Y(f) \text{ Output} \\ \hline \\ \text{Linear system} \end{array}$$

Deterministic signals: $\begin{array}{c} Y(f) = X(f)H(f) \\ G_Y(f) = G_X(f)|H(f)|^2 \end{array}$

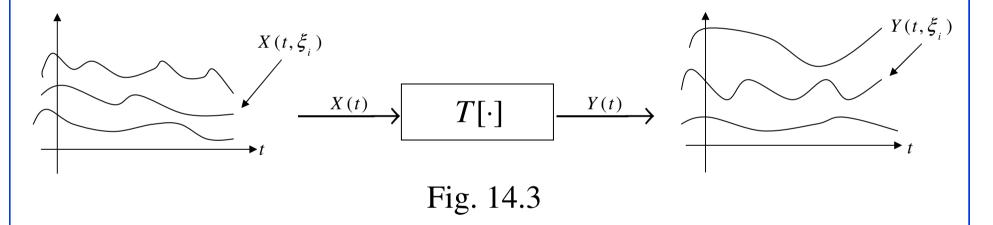
Ideal distortion less transmission:

• All the frequency components of the signal not only arrive with an *identical time delay*, but also *amplified or attenuated equally*.

$$y(t) = Kx(t - t_0)$$
 or $H(f) = Ke^{-j2\pi f t_0}$

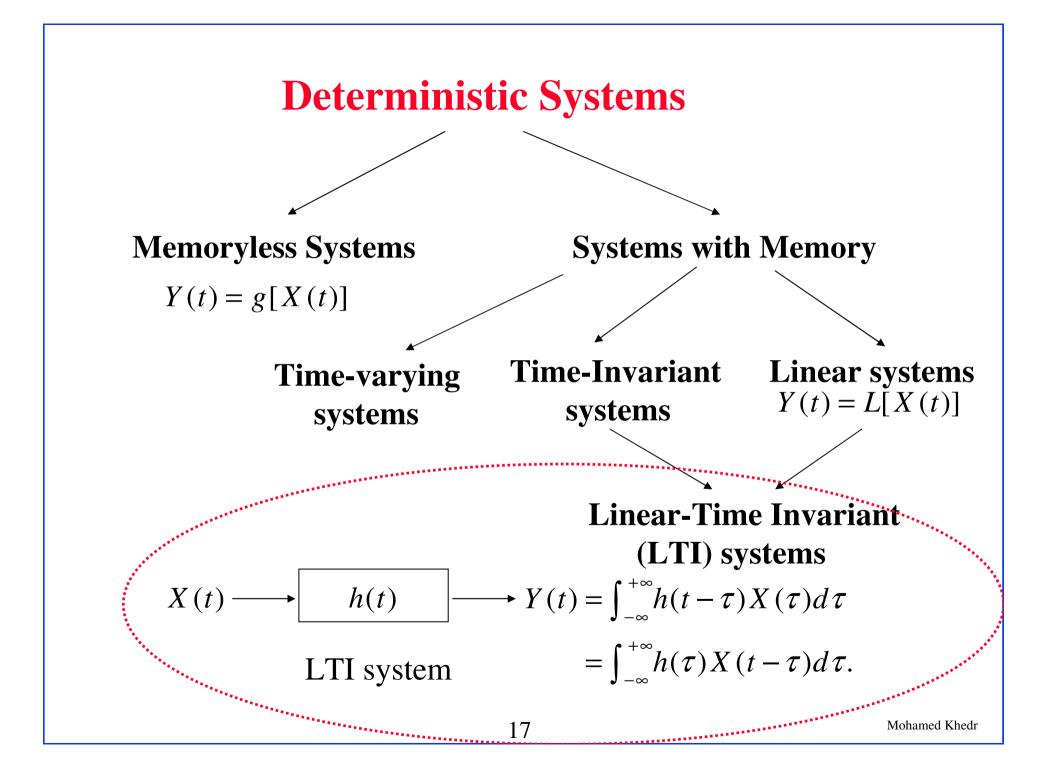
(Deterministic) Systems with Stochastic Inputs

A deterministic system¹ transforms each input waveform $X(t,\xi_i)$ into an output waveform $Y(t,\xi_i) = T[X(t,\xi_i)]$ by operating <u>only on the</u> <u>time variable *t*</u>. Thus a set of realizations at the input corresponding to a process X(t) generates a new set of realizations $\{Y(t,\xi)\}$ at the output associated with a new process Y(t).

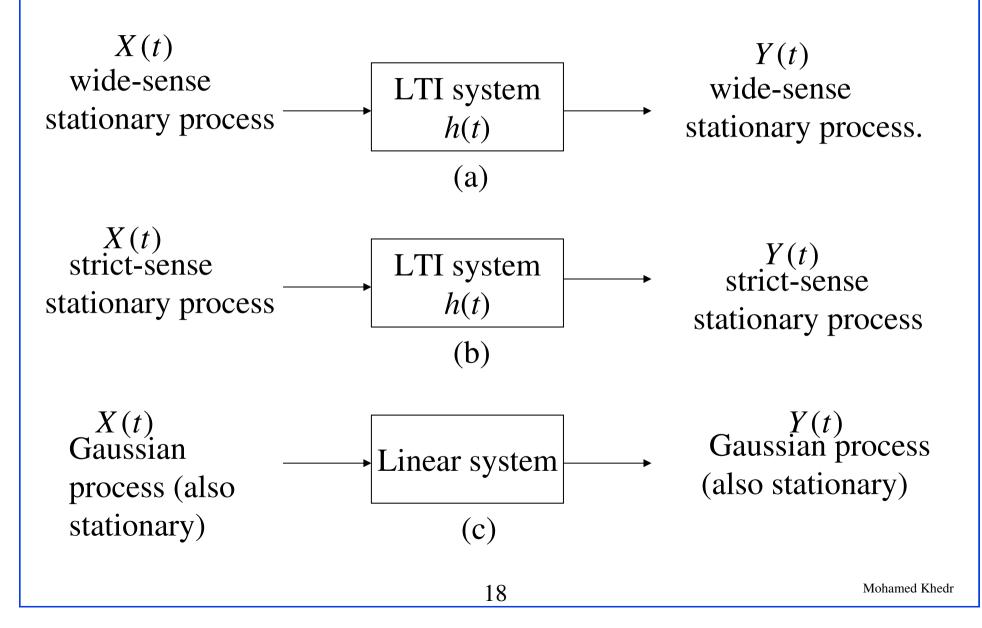


Our goal is to study the <u>output process statistics</u> in terms of the input <u>process statistics and the system function</u>.

¹A stochastic system on the other hand operates on both the variables t and ξ .



LTI Systems: WSS input good enough



White Noise Process & LTI Systems

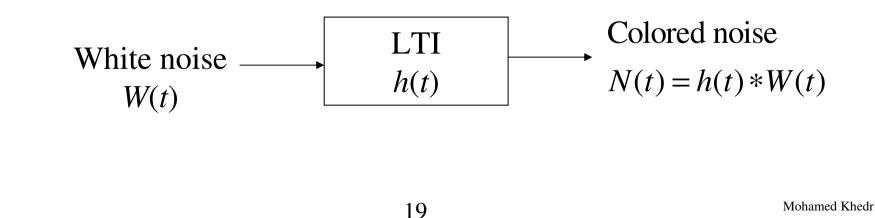
W(t) is said to be a white noise process if

 $R_{WW}(t_1, t_2) = q(t_1)\delta(t_1 - t_2),$

i.e., $E[W(t_1) \ W^*(t_2)] = 0$ unless $t_1 = t_2$. W(t) is said to be *wide-sense stationary* (*w.s.s*) white noise if E[W(t)] = constant, and

$$R_{WW}(t_1,t_2) = q\delta(t_1-t_2) = q\delta(\tau).$$

If W(t) is also a Gaussian process (white Gaussian process), then all of its samples are independent random variables



Narrowband Noise Representation

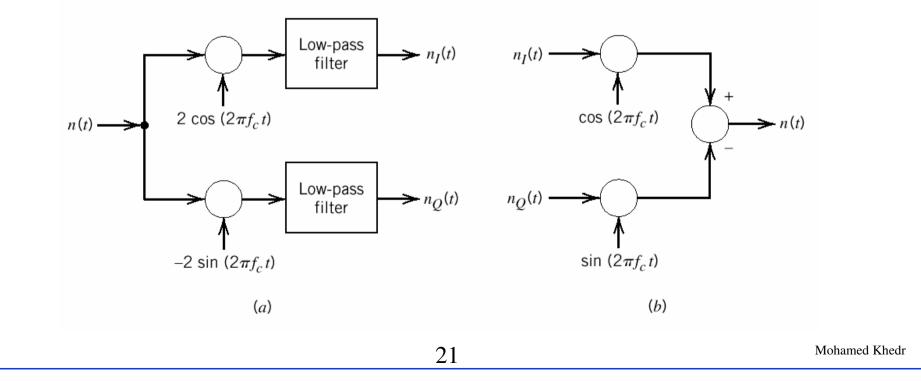
- □ The noise process appearing at the output of a narrowband filter is called *narrowband noise*.
- Representations of narrowband noise
 - □ A pair of component called the *in-phase* and *quadrature* components.
 - □ Two other components called the *envelop* and *phase*.

Representation of Narrowband Noise in Terms of In-Phase and Quadrature Components

- **Consider a narrowband noise** n(t) of bandwidth 2*B* centered on frequency.
- \Box We may represent n(t) in the canonical (standard) form:

$$n(t) = n_I(t)\cos(2\pi f_c t) - n_Q(t)\sin(2\pi f_c t)$$

where, $n_I(t)$ is *in-phase* component of n(t) and $n_Q(t)$ is *quadrature* component of n(t).



 \square $n_I(t)$ and $n_Q(t)$ have important properties:

- \square $n_I(t)$ and $n_Q(t)$ have zero mean.
- \square n(t) is Gaussian, then $n_I(t)$ and $n_Q(t)$ are jointly Gaussian.
- \square n(t) is stationary, then $n_I(t)$ and $n_Q(t)$ are jointly stationary.
- □ Both $n_I(t)$ and $n_O(t)$ have the same power spectral density.

$$S_{N_{I}}(f) = S_{N_{Q}}(f) = \begin{cases} S_{N}(f - f_{c}) + S_{N}(f + f_{c}), & -B \le f \le B \\ 0, & otherwise \end{cases}$$

 \square $n_I(t)$ and $n_Q(t)$ have the same variance as n(t)

The cross-spectral density of the n_I(t) and n_Q(t) is purely imaginary:

$$\begin{split} S_{N_{I}N_{g}}(f) &= -S_{N_{g}N_{I}}(f) \\ &= \begin{cases} j[S_{N}(f+f_{c}) - S_{N}(f-f_{c})], & -B \leq f \leq B \\ 0, & otherwise \end{cases} \end{split}$$

• If n(t) is Gaussian and its power spectral density $S_N(t)$ is symmetric about the mid-band frequency f_c , then $n_I(t)$ and $n_Q(t)$ are statistically independent.

Representation of Narrowband Noise in Terms of Envelope and Phase Components

Here we represent n(t) in terms of envelope and phase components:

 $n(t) = r(t) \cos[2\pi f_c t + \psi(t)]$

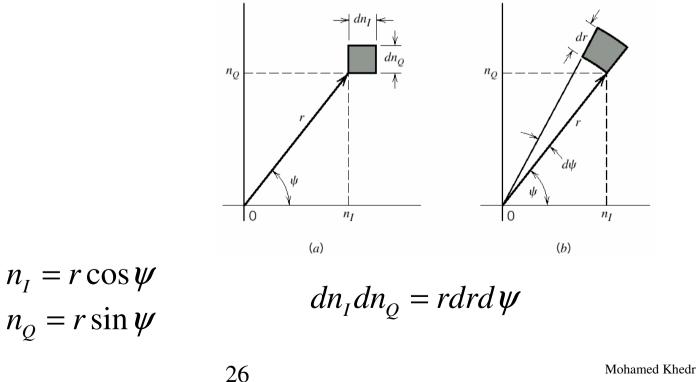
where, $r(t) = [n_I^2(t) + n_Q^2(t)]^{1/2}$ and $\psi(t) = \tan^{-1} \left[\frac{n_Q(t)}{n_I(t)} \right]$

• r(t) is called the *envelope* of n(t), and the $\psi(t)$ is called the *phase* of n(t).

- The probability distributions of r(t) and ψ(t) may be obtained from those of n_I(t) and n_Q(t) as follows.
- Let N_I and N_Q denote the random variables obtained by the sample functions $n_I(t)$ and $n_Q(t)$, respectively.
- Then, N_I and N_Q are independent Gaussian random variables of zero mean and variance σ^2 .
- So, we may express their joint probability density function by

$$f_{N_{I},N_{Q}}(n_{I},n_{Q}) = \frac{1}{2\pi\sigma^{2}} \exp\left(-\frac{n_{I}^{2} + n_{Q}^{2}}{2\sigma^{2}}\right)$$

Figure Illustrating the coordinate system for representation of narrowband noise: (a) in terms of inphase and quadrature components, and (b) in terms of envelope and phase.



- Now, let R and Ψ denote the random variables obtained by the sample functions r(t) and $\psi(t)$, respectively.
- Then we find the joint probability density function of $_R$ and is $\,\Psi\,$

$$f_{R,\Psi}(r,\psi) = \frac{r}{2\pi\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right)$$
 (1.113)

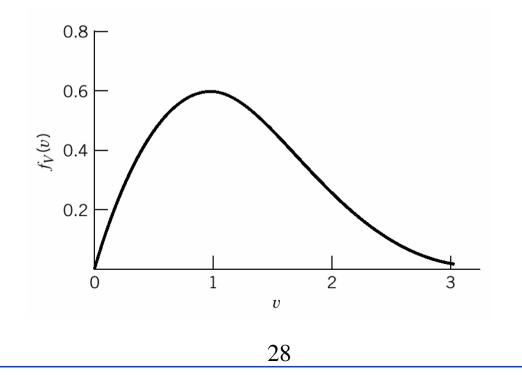
- From (1.113), the random variables R and Ψ are statistically independent.
- Therefore,

$$f_{\Psi}(\psi) = \begin{cases} \frac{1}{2\pi}, & 0 \leq \psi \leq 2\pi \\ 0, & elsewhere \end{cases}$$

$$f_{R}(r) = \begin{cases} \frac{r}{\sigma^{2}} \exp\left(-\frac{r^{2}}{2\sigma^{2}}\right), & r \ge 0\\ 0, & \text{elsewhere} \end{cases}$$

- Rayleigh distribution (Figure 1.22) : A random variable having the probability density function of Equation (1.115).
- Let, $v = r/\sigma$ then the normalized form is

$$f_{v}(v) = \begin{cases} v \exp\left(-\frac{v^{2}}{2}\right), & v \ge 0\\ 0, & elsewhere \end{cases}$$



Sine Wave Plus Narrowband Noise

• Add the sinusoidal wave $A\cos(2\pi f_c t)$ to the narrowband noise n(t).

$$x(t) = A\cos(2\pi f_c t) + n(t)$$

• Use in-phase and quadrature components for n(t)

$$x(t) = n_I'(t)\cos(2\pi f_c t) - n_Q(t)\sin(2\pi f_c t)$$

where, $n_I'(t) = A + n_I(t)$

• We assume that n(t) is Gaussian with zero mean and variance σ^2 , then we find that:

• Joint probability density function of N_I and N_Q

$$f_{N_{I}',N_{Q}}(n_{I}',n_{Q}) = \frac{1}{2\pi\sigma^{2}} \exp\left(-\frac{(n_{I}'-A)^{2} + n_{Q}^{2}}{2\sigma^{2}}\right)$$

Joint probability density function of R and Ψ

$$f_{R,\Psi}(r,\psi) = \frac{r}{2\pi\sigma^2} \exp\left(-\frac{r^2 + A^2 - 2Ar\cos\psi}{2\sigma^2}\right)$$

• Now we are interested in the probability density function of R

$$f_{R}(r) = \int_{0}^{2\pi} f_{R,\Psi}(r,\psi) d\psi$$
$$= \frac{r}{2\pi\sigma^{2}} \exp\left(-\frac{r^{2}+A^{2}}{2\sigma^{2}}\right) \int_{0}^{2\pi} \exp\left(\frac{Ar}{\sigma^{2}}\cos\psi\right) d\psi \quad (1.126)$$

modified Bessel function of the first kind of zero order

$$I_0(x) = \frac{1}{2\pi} \int_0^{2\pi} \exp(x \cos \psi) d\psi$$
, $x = Ar / \sigma^2$

Rewrite (1.126)

J

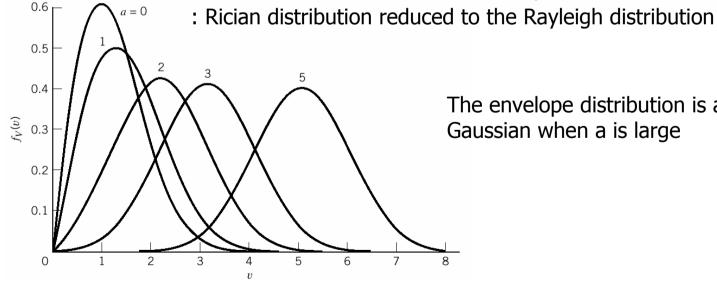
$$f_{R}(r) = \frac{r}{\sigma^{2}} \exp\left(-\frac{r^{2} + A^{2}}{2\sigma^{2}}\right) I_{0}\left(\frac{Ar}{\sigma^{2}}\right)$$

This is called the *Rician distribution*. (Figure 1.23)

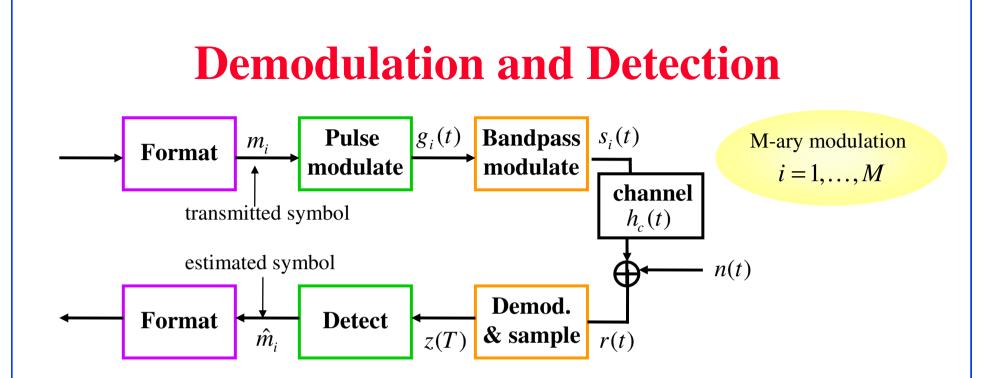
Let $v = r/\sigma$, $a = A/\sigma$, then the normalized form is

$$f_{\mathcal{V}}(v) = v \exp\left(-\frac{v^2 + a^2}{2}\right) I_0(av)$$

32

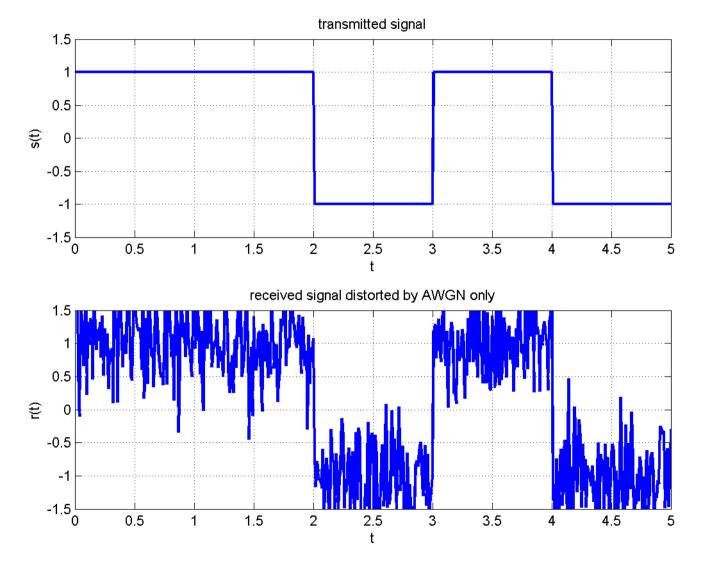


The envelope distribution is approximately Gaussian when a is large



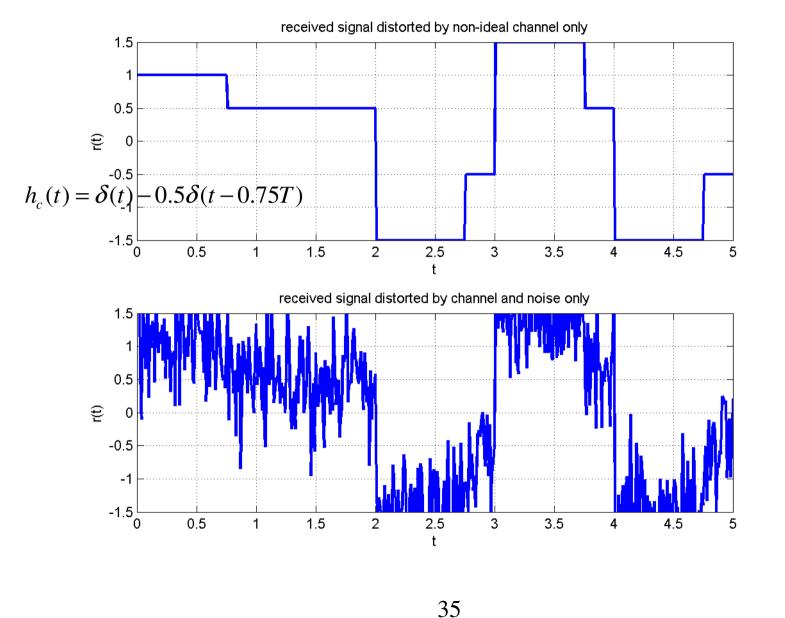
- □ Major sources of errors:
 - □ Thermal noise (AWGN)
 - disturbs the signal in an additive fashion (Additive)
 - □ has flat spectral density for all frequencies of interest (White)
 - □ is modeled by Gaussian random process (Gaussian Noise)
 - □ Inter-Symbol Interference (ISI)
 - Due to the filtering effect of transmitter, channel and receiver, symbols are "smeared".

Example: Impact of the channel



..... named Khedr

Example: Channel impact ...



Mohamed Khedr

Receiver tasks

Demodulation and sampling:

■ Waveform recovery and preparing the received signal for detection:

Improving the signal power to the noise power (SNR) using matched filter

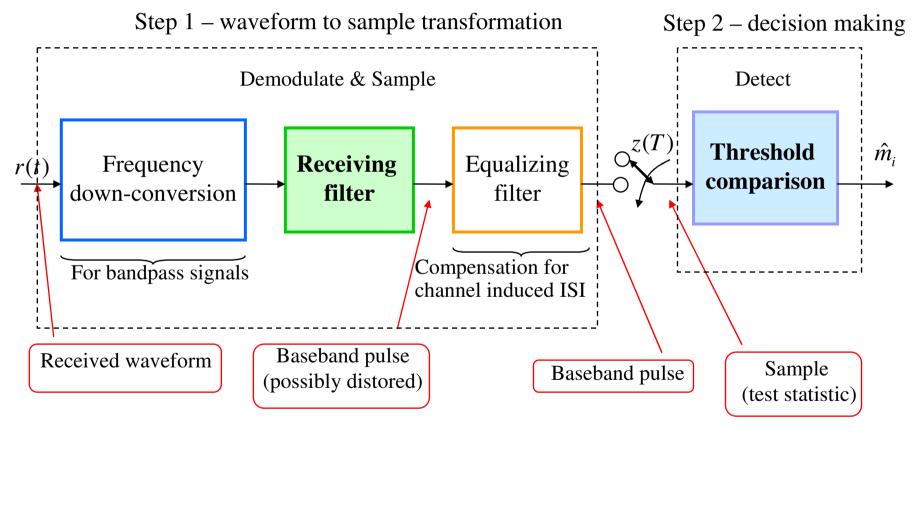
□Reducing ISI using equalizer

□Sampling the recovered waveform

Detection:

Estimate the transmitted symbol based on the received sample

Receiver structure



Baseband and Bandpass

Bandpass model of detection process is equivalent to baseband model because:

□ The received bandpass waveform is first transformed to a baseband waveform.

□ Equivalence theorem:

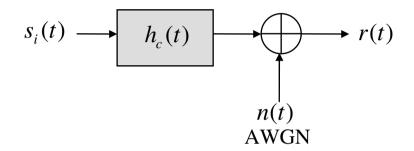
Performing bandpass linear signal processing followed by heterodyning the signal to the baseband, yields the same results as heterodyning the bandpass signal to the baseband, followed by a baseband linear signal processing.

Steps in designing the receiver

- □ Find optimum solution for receiver design with the following goals:
 - 1. Maximize SNR
 - 2. Minimize ISI
- **Steps in design:**
 - Model the received signal
 - □ Find separate solutions for each of the goals.
- □ First, we focus on designing a receiver which maximizes the SNR.

Design the receiver filter to maximize the SNR

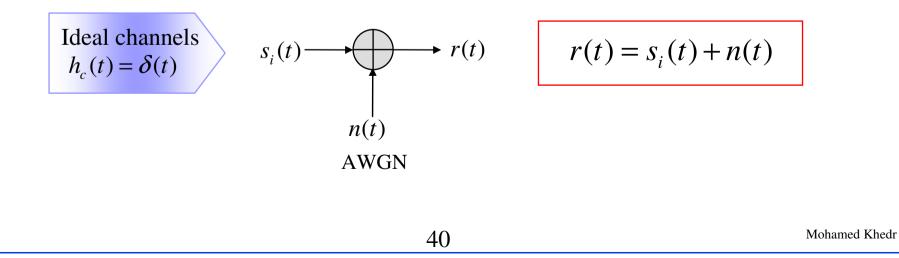
□ Model the received signal



$$r(t) = s_i(t) * h_c(t) + n(t)$$

□ Simplify the model:

Received signal in AWGN



Matched filter receiver

D Problem:

□ Design the receiver filterh(t) such that the SNR is maximized at the sampling time when $s_i(t), i = 1, ..., M$ is transmitted.

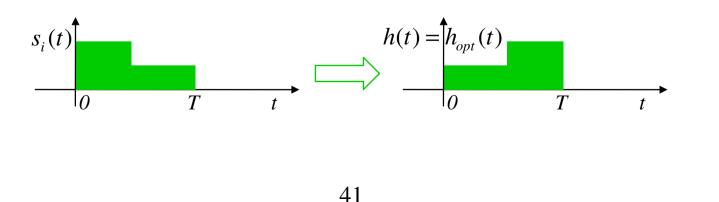
Solution:

□ The optimum filter, is the Matched filter, given by

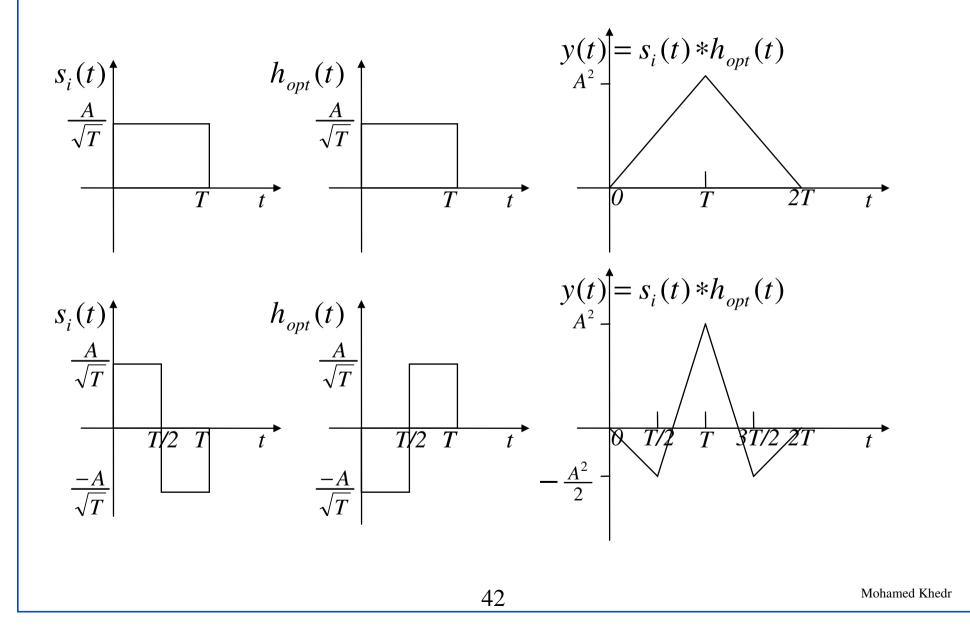
$$h(t) = h_{opt}(t) = s_i^* (T - t)$$

H(f) = H_{opt}(f) = S_i^* (f) exp(-j2\pi fT)

which is the time-reversed and delayed version of the conjugate of the transmitted signal



Example of matched filter



Properties of the matched filter

The Fourier transform of a matched filter output with the matched signal as input is, except for a time delay factor, proportional to the $\underline{\text{ESD}}$ of the input signal.

$$Z(f) = |S(f)|^2 \exp(-j2\pi fT)$$

The output signal of a matched filter is proportional to a shifted version of the autocorrelation function of the input signal to which the filter is matched.

$$z(t) = R_s(t-T) \Longrightarrow z(T) = R_s(0) = E_s$$

The output SNR of a matched filter depends only on the ratio of the signal energy to the PSD of the white noise at <u>the filter input</u>.

$$\max\left(\frac{S}{N}\right)_T = \frac{E_s}{N_0 / 2}$$

Two matching conditions in the matched-filtering operation:

spectral phase matching that gives the desired output peak at time T.

spectral amplitude matching that gives optimum SNR to the peak value.

Correlator receiver

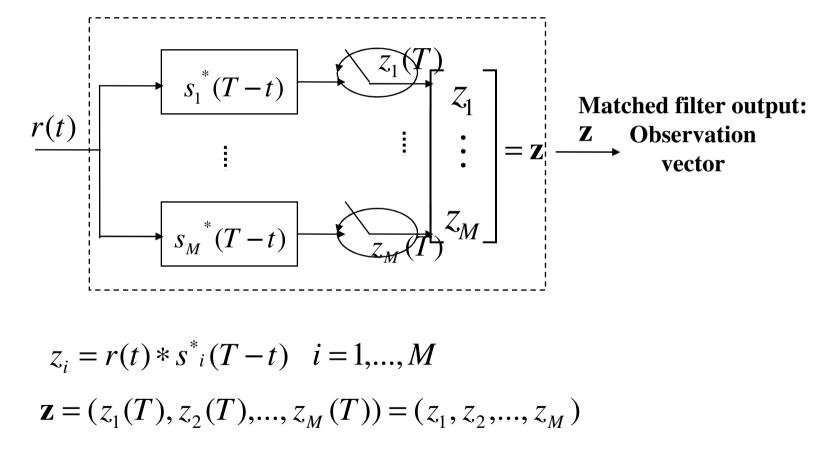
□ The matched filter output at the <u>sampling time</u>, can be realized as the correlator output.

$$z(T) = h_{opt}(T) * r(T)$$

= $\int_{0}^{T} r(\tau) s_{i}^{*}(\tau) d\tau = \langle r(t), s(t) \rangle$

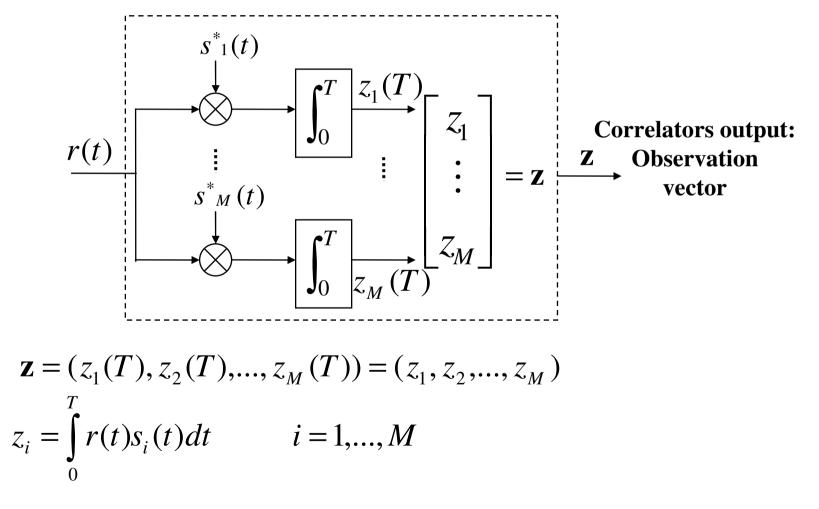
Implementation of matched filter receiver

Bank of M matched filters

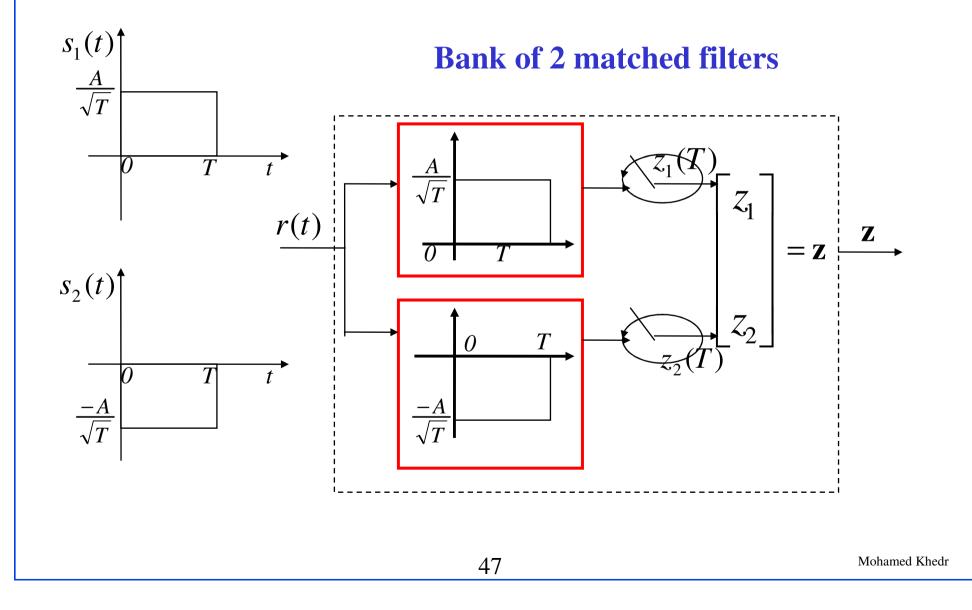


Implementation of correlator receiver

Bank of M correlators



Implementation example of matched filter receivers



Questions?

