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Random Sequences and Random Processes

50

X(n{)
o

100

Illustration of the concept of random sequence X (n, {) where the { domain (i.e., the
sample space (1) consists of just 10 values. (Samples connected for plot.)
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Random process

O A random process is a collection of time functions, or signals,
corresponding to various outcomes of a random experiment. For each
outcome, there exists a deterministic function, which is called a sample

function or a realization.

Real number

Random
variables

/{Xi(tk)}f\]:1

>Sample functions
or realizations
(deterministic

........ j fun(:tion)

time (t)
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Specifying a Random Process

O A random process is deflned by all its joint CDFs
p(X (1

) = Ip, 1”1) I, XF[:fTI-) i: Tp).
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Stationarity

O If time-shifts (any value T) do not affect its joint CDF
p(X(to) < xo, X (1) < x1,...,- X(tp) < xp,) =




Wide Sense Stationarity (wss)

1D

0 Keep only above two properties (2" order stationarity)...

O Don’t insist that higher-order moments or higher order joint CDFs be
unaffected by lag T

O With LTI systems, we will see that WSS inputs lead to WSS outputs,

QO In particular, if a WSS process with PSD S,(f) is passed through a linear time-
invariant filter with frequency response H(f), then the filter output is also a WSS
process with power spectral density |H(f)I2S,(f).

0 Gaussian w.s.s. = Gaussian stationary process (since it only has 2"¢ order
moments)
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X(ng)

Ergodicity

O Time averages = Ensemble averages
[i.e. “ensemble” averages like mean/autocorrelation can be computed as “fime-
averages” over a single realization of the random process]

O A random process: ergodic in mean and autocorrelation (like w.s.s.) if

1 [T/2 1 (T2 .
?/ X(0df and  |Ry(r) = lim = 1 X(OX (=t

100
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Autocorrelation: Summary

O Autocorrelation of an energy signal

Ry(r) = z(r) *x2*(—71) = [ z(t)z™(t — 7)dt
O Autocorrelation of a power signal

Ro(r) = lim = 172 ae*(t — v)dt
T) = — x(t)x — T

B T—oo 1l J-T/2

O For a periodic signal:

Ro(r) = 4 [782, w(t)a* (¢ — 7)dt

O Autocorrelation of a random signal

Rx(t;,t;) = E[X(t;) X*(t;)]
O For a WSS process:

Rx () = E[X(@)X*( —7)]
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Power Spectral Density (PSD)

The power spectral density (PSD) of a WSS process 1s defined as the Fourier transform of its autocorrelation
function with respect to 7:

o0
Sx(f) = / Ax (T)e 327 dr. (B.26)
.
The autocorrelation can be obtained from the PSD through the inverse transform:
[ %] .
Ax(r) = [ sx(permias (B.27)
o

The PSD takes its name from the fact that the expected power of a random process X (7) is the integral of its PSD:

X

BIXC() = Ax(0) = [ Sx(1)dr (B.28)

— X

1. Sy(f) is real and Sy (f) >0
2. Sx(-1) = Sx(f)
3. Ay(0) = [ Sy(®) do
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Spectral density: Summary

0 Energy signals:
Er = [ |e(@®)|2dt = [ |X(H)|2df X(f) = Flz(t)]

0 Energy spectral density (ESD): W (f) = |X(N)|?

O Power signals:

Po= g 113 le(®)Pdt = S5 _olenl?  {en} = Fla(O)]

QO Power spectral density (PSD):

oo

Go(f)= Y J|en?6(f —nfo)  fo=1/To

nN——=aoo

0 Random process:
O Power spectral density (PSD):

Gx(f) = FlRx(7)]

Note: we have used f for w and Gx for Sx 11 Mohamed Khedr




Properties of an autocorrelation function

Q For real-valued (and WSS for random signals):

1.

Autocorrelation and spectral density form a Fourier
transform pair. Ry (T) <> Sy ()

Autocorrelation 1s symmetric around zero. Ry (-T) = R(T)
Its maximum value occurs at the origin. IR (T)l < R (0)
Its value at the origin i1s equal to the average power or

COCLEY.  EBx2(1) = Ax(0) = / " Sx(f)df.
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Noise in communication systems

O Thermal noise is described by a zero-mean Gaussian random process,

n(t).

O Its PSD is flat, hence, it is called white noise. IID gaussian.

2
p(n) = - 127T exp [—%]

0.4
0.3}
0.2}
o=1
0.1
% ) ] 2 . 4

Probability density function

Gn(f) = % [w/Hz]

Power spectral

density

f
N
Rp(7) = 526(7)

Autocorrelation 1

function

-
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White Gaussian Noise

O White:

Q Power spectral density (PSD) is the same, 1.e. flat, for all frequencies of
interest (from dc to 10'? Hz)

O Autocorrelation is a delta function => two samples no matter however
close are uncorrelated.

a N,/2 to indicate two-sided PSD
0 Zero-mean gaussian completely characterized by its variance (6?)

0 Variance of filtered noise is finite = N/2

O Similar to “white light” contains equal amounts of all frequencies in the
visible band of EM spectrum

O Gaussian + uncorrelated => 1.1.d.
O Affects each symbol independently: memoryless channel

O Practically: if b/w of noise is much larger than that of the system: good
enough
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Signal transmission w/ linear systems (filters)

x(t)

Input X(F) —

h(t)
H(f)

(¢)
— g(f) Output

Linear system

QO Deterministic signals:

0 Random signals:

Y(f)=X(f)H()

Gy (f) = Gx(H)IH(f)|?

Ideal distortion less transmission:

 All the frequency components of the signal not only arrive
with an identical time delay, but also amplified or attenuated

equally.

y(t) = Ka(t — tg) or H(f) = Ke—327ft0

15
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(Deterministic) Systems with Stochastic Inputs
A deterministic system! transforms each input waveform X (¢,¢,) into
an output waveform Y (#,&,) =T[X (¢,£;)] by operating only on the
time variable ¢. Thus a set of realizations at the input corresponding
to a process X(¢) generates a new set of realizations {Y (#,£)} at the
output associated with a new process Y(7).

A

X(t,6))

V\M/

Fig. 14.3

—\/Y(fg)

3\\
\7\‘

X (1) N T[] Y (1)

WV

Our goal 1s to study the output process statistics in terms of the input
process statistics and the system function.

IA stochastic system on the other hand operates on both the variables 7 and &

16 PIL s/ Gt




Deterministic Systems

T

Memoryless Systems Systems with Memory

Y (1) = g[X () / / \

Time-varying Time-Invariant Linear systems
systems systems Y(t)=L[X(1)]
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LTI Systems: WSS input good enough

X (1)
wide-sense
stationary process

X (1)
strict-sense

stationary process

X (1)
Gaussian

process (also
stationary)

—

LTI system
h(1)

—>

(a)

—

LTI system
h(1)

(b)

Linear system

(c)

18

Y (1)
wide-sense
stationary process.

Y (1)
strict-sense

stationary process

Y (1)
Gaussian Process

(also stationary)
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White Noise Process & LTI Systems

W(t) 1s said to be a white noise process if

R‘W(tptz) ZQ(t1)5(t1 _tz)a

i.e., E[W(t,) W'(t,)] =0 unless t,=1t,.
W(¥) 1s said to be wide-sense stationary (w.s.s) white noise
if EfW(¢)] = constant, and

R (t,,t,)=qo(t, —t,)=qO(7).

If W(z) 1s also a Gaussian process (white Gaussian process), then all
of 1ts samples are independent random variables

1TI Colored noise

White roiee -
“Wf(gmse h(p) N(t) = h(t) W ()

1 9 Mohamed Khedr




Narrowband Noise Representation

O The noise process appearing at the output of a narrowband
filter is called narrowband noise.

0 Representations of narrowband noise

QO A pair of component called the in-phase and quadrature
components.

0 Two other components called the envelop and phase.

20 Mohamed Khedr




Representation of Narrowband Noise in Terms of In-Phase
and Quadrature Components

Consider a narrowband noise n(r) of bandwidth 2B centered on frequency.

We may represent n(t) in the canonical (standard) form:

n(t) =n,(t)cos(2af t)—n,(t)sin(27f .t)

where, 1, (t)is in-phase component of n(t) and "y, ()is quadrature

component of 7(z)

— 1(1)

Low-pass
filter

n(f) —mp 2 COS (27f,1)

Low-pass
filter

20 HQ[I}

-2 sin (27f.1)

(a)

21

n;(1)

cos (2mf.1) n(t)

HQ{I)

sin (27f,.1)

(b)
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Q n,(¢t)and n,(t) have important properties:
Q n,(t) and n,(t) have zero mean.
0 n(7)is Gaussian, then n, (t) and n,(?) are jointly Gaussian.
Q n(?) is stationary, then 7, (f) and 1, (?) are jointly stationary.
QO Both n,(¢) and n,(¢) have the same power spectral density.

Sv(f =f)+Sy(f+f), —-B<f<B

0, otherwise

Sy, (f) =58y, (/) ={

a 1, (t) and 1, (t)have the same variance as 7(?)

22 Mohamed Khedr




= The cross-spectral density of the n,(f)and »,(¢) is purely
Imaginary:

N;Ng (f) Ngwf(f)
:{J[Sw(f+fc)_sw(f_fc)]:- -B<f<B

0, otherwise

. If (@) s Gaussian and its power spectral density s,,() is
symmetric about the mid-band frequency £ ,

then #;(t) and #y(t) are statistically independent.

23 Mohamed Khedr




Representation of Narrowband Noise 1n Terms of
Envelope and Phase Components

= Here we represent n(?) in terms of envelope and phase
components:

n(t)=r(t)cos|2af .1+ yw(t)]

where, r@=[n"®+n, ®I"* and MI)Ztaﬂ_lﬁggﬂ
T

= 7(t) iscalled the envelope of n() , and the w(z)is called the
phase of n(1).

2 4 Mohamed Khedr




The probability distributions of »(¢) and w(¢) may be obtained
from those of »;(?) and #»,(¢) as follows.

Let w, and N, denote the random variables obtained by the
sample functions », () and (), respectively.

Then, ¥ and N, are independent Gaussian random
variables of zero mean and variance 52 .

So, we may express their joint probability density function by

1 ) ’ + 71 ’
_ I o
beNg (HI:HQ) N Wexp{ 20°° J

2 5 Mohamed Khedr




a Figure Illustrating the coordinate system for
representation of narrowband noise: (a) in terms of in-
phase and quadrature components, and (b) 1n terms of

envelope and phase.

n | e

(a)
n, =rcosy

n,=rsmny

Q
26

(b)

dn,dn, = rdrdy
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= Now, let R and ‘¥ denote the random variables obtained by
the sample functions 7(¢) and w(?) , respectively.

= Then we find the joint probability density function of R and
is ¥
¥

FE
W) = exp| —
Trv (W)= p[ zaEJ (1.113)

= From (1.113), the random variables R and ¥ are
statistically independent.

= Therefore,

= o)
fowy=i2m  OEVEA

0 elsewhere

Lna}{p — r’
JAGE L 206t ), =20

0 elsewhere

Mohamed Khedr
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s Rauleigh distribution (Figure 1.22) : A random variable having
the probability density function of Equation (1.115).

= Let, v=r/c then the normalized form is

v2
vexp| — — |,
F@={"2)  v20
0, elsewhere
0.8 —
0.6 -
=
= 041
8
0.2
| |
0 1 2 3
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Sine Wave Plus Narrowband Noise

= Add the sinusoidal wave Acos(27f.f) to the narrowband noist
nt) .
x(t)=Acos(27f, 1)+ n(t)
= Use in-phase and quadrature components for #()

x(1) = n;' () cos( 27 1) — ny (1) sin( 27f,.)

where, n,'(1)= A+ n,(t)

= We assume that () is Gaussian with zero mean and variance
o, then we find that:

29 Mohamed Khedr




= Joint probability density function of #," and N,

| 1 (n,'—A)* +ﬂ;
fNI',NQ (n; :”g) - Py exp{ 2

20

= Joint probability density function of R and ‘¥

r r'+A4*—2Arcosy
expl —
270" 20"

fR,W(F:W):

30
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= Now we are interested in the probability density function of R
e
fx) = faurp)dy

T _FE+A3 J.EJ'IEK ﬁmsw]dw
270 20° o’ (2ol

modified Bessel function of the
first kind of zero order

I,(x)= Lrﬂ exp(.xcus tp')dtpf x=Ar/oc’
27 0

3 1 Mohamed Khedr




= Rewrite (1.126)
r rt+A4* Ar
= _ Il =
7+() Jgexp[ = NJ]

= This is called the Rician distribution. (Figure 1.23)
m Let v=r/6, a=A/c, then the normalized form is

2

B _v2+n -
fr(V)—VEXP{ 5 }Tu( )

0 : Rician distribution reduced to the Rayleigh distribution

3

The envelope distribution is approximately
Gaussian when a is large

3 2 Mohamed Khedr




Demodulation and Detection

Format

. 4

Pulse

*| modulate

g,(t) | Bandpass | s;(?)

transmitted symbol

estimated symbol

A

Format

P

|

<

A

n.

1

Detect

> modulate | ———1
channel

h (1)

G n®
) Demod.

O Major sources of errors:
Q Thermal noise (AWGN)
a disturbs the signal in an additive fashion (Additive)
0 has flat spectral density for all frequencies of interest (White)
0 is modeled by Gaussian random process (Gaussian Noise)
O Inter-Symbol Interference (ISI)

a Due to the filtering effect of transmitter, channel and receiver, symbols
are “‘smeared”.

) z(T) | & sample T(t)

33

M-ary modulation

i=1,....M
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Example: Impact of the channel

s(t)

r(t)

1.5

0.5

-0.5

-1.5
0

0 H

-0.5

-1

-1.5

transmitted signal

|
0.5 1 1.5

i
2

il

4
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Example: Channel impact ...

received signal distorted by non-ideal channel only
1.5 . . ! ! ! !

1 — — A S E B . T |

05k - e R — . S S— i

r(t)

N T— S S — T R (R — i

05 TS RN NN S I ......... b ........

h.(t)=0(1)1-0. 55(t —0. 75T)

15 | | | | | | |

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
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Receiver tasks

0 Demodulation and sampling:

0 Waveform recovery and preparing the received
signal for detection:

QImproving the signal power to the noise power
(SNR) using matched filter

OReducing ISI using equalizer
ASampling the recovered waveform
Q Detection:

QO Estimate the transmitted symbol based on the
received sample

3 6 Mohamed Khedr




Recelver structure

Step 1 — waveform to sample transformation Step 2 — decision making

Demodulate & Sample

Frequency Receiving Equalizing
down-conversion filter | filter

A - g

“For bandpass signals Compensation for
channel induced ISI

[ Received waveform} [ Baseband pulse ]
)

(possibly distored

(test statistic)

[Baseband pulse] [ Sample ]
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Baseband and Bandpass

O Bandpass model of detection process 1s equivalent to
baseband model because:

QA The received bandpass waveform 1s first
transformed to a baseband waveform.

a Equivalence theorem:

QPerforming bandpass linear signal processing
followed by heterodyning the signal to the
baseband, yields the same results as
heterodyning the bandpass signal to the
baseband , followed by a baseband linear signal
processing. 38 Mohamed K




Steps in designing the receiver

QO Find optimum solution for receiver design with the
following goals:

I. Maximize SNR
2. Minimize ISI
Q Steps in design:
O Model the received signal
0 Find separate solutions for each of the goals.

QO First, we focus on designing a receiver which maximizes the
SNR.

3 9 Mohamed Khedr




Design the receiver filter to maximize the SNR

0 Model the received signal

5,00 —| I (8) QF 20 r(t) = 5,(t) %h () + n(?)

n(r)
AWGN

a Simplify the model:
A Received signal in AWGN

Ideal channels r(t)

(1) = 8(0) ) r(1)=s;(1) + n(t)

n(r)
AWGN
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Matched filter receiver

O Problem:

Q Design the receiver filter/y (¢ )such that the SNR is maximized at the
sampling time when S, (¢),i=1,...,M istransmitted.

O Solution:

O The optimum filter, is the Matched filter, given by
h(t)=h,, (t)=s, (T —1t)
H(f)=H,, (f)=S, (f)exp(—j27T)

which is the time-reversed and delayed version of the conjugate of the
transmitted signal

s; (1) h(t) =\h,, (1)
0 T t 0 T t

4 1 Mohamed Khedr




Example of matched filter

Sl. (Z_)A hopt (l_) A
_A _A
JT JT
T ¢ T
Sl. (Z_)A hopt (l_) A
_A _A
JT JT
172N 1 2 T
=4 =A
JT JT

42

y()
A* 4

=s,(t)%h,, (1)
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Properties of the matched filter

The Fourier transform of a matched filter output with the matched signal as input is,
except for a time delay factor, proportional to the ESD of the input signal.

Z(f)=1S(f)I exp(-j2AT)

The output signal of a matched filter is proportional to a shifted version of the
autocorrelation function of the input signal to which the filter is matched.

z2) =R (t-T)=z(T)=R (0)=E,

The output SNR of a matched filter depends only on the ratio of the signal energy to the
PSD of the white noise at the filter input.

)7
max| — =
N). N,I2

Two matching conditions in the matched-filtering operation:
spectral phase matching that gives the desired output peak at time 7.

spectral amplitude matching that gives optimum SNR to the peak value.
43 Mohamed Khedr




Correlator receiver

Q The matched filter output at the sampling time, can be

realized as the correlator output.

2(T)=h,, (T)*r(T)

— j r(7)s; (T)dT =< r(t),s(t) >

44
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Implementation of matched filter receiver

Bank of M matched filters

__________________________________________________

: 1 Matched filter output:
r(t) _ . i Z  Observation
; : z vector

z.=r@®)*s(T-1) i=1...M
2=(2,(T),2,(T)yes 20y (T)) = (21, Zy5eers Zyy )

4 5 Mohamed Khedr




Implementation of correlator receiver

Bank of M correlators

________________________________________________

S*1(l‘)
T|z,(T)_ _
: _[() Z1 . Correlators output:
r(z) : . | _ ' Z Observation
' s“u (1) ' | T2 vector
T
J, b
0 Ky (T)

Z2=(2,(T),2,(T)yees 20, (T)) = (2, 2y 2y )

2, = [ r()s, (t)dt i=1,..,M

0
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Implementation example of matched filter receivers

Sl(j) Bank of 2 matched filters
N
0 T t _A 4@2_ _
: VT <
r(t) Z
0 T =7 —
s, (1)
0 T ¢ (1)
—A —A
JT JT
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Questions?
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