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Random Sequences and Random Processes
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Random process
� A random process is a collection of time functions, or signals, 

corresponding to various outcomes of a random experiment. For each 
outcome, there exists a deterministic function, which is called a sample 
function or a realization.
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Specifying a Random Process
� A random process is defined by all its joint CDFs

for all possible sets of sample times 

t0 t1
t2

tn…
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Stationarity
� If time-shifts (any value T) do not affect its joint CDF

t0
t1

t2

tn… t0 + T t1+T t2+T 
tn+T
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Wide Sense Stationarity (wss)

� Keep only above two properties (2nd order stationarity)…
� Don’t insist that higher-order moments or higher order joint CDFs be 

unaffected by lag T

� With LTI systems, we will see that WSS inputs lead to WSS outputs, 
� In particular, if a WSS process with PSD SX(f) is passed through a linear time-

invariant filter with frequency response H(f), then the filter output is also a WSS 
process with power spectral density |H(f)|2SX(f).

� Gaussian w.s.s. = Gaussian stationary process (since it only has 2nd order 
moments)
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Ergodicity
� Time averages = Ensemble averages
[i.e. “ensemble” averages like mean/autocorrelation can be computed as “time-

averages” over a single realization of the random process]
� A random process: ergodic in mean and autocorrelation (like w.s.s.) if 

and     

Time average

Ensem
ble average

E[X
(t)]
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Autocorrelation: Summary
� Autocorrelation of an energy signal

� Autocorrelation of a power signal

� For a periodic signal:

� Autocorrelation of a random signal

� For a WSS process: 
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Power Spectral Density (PSD)

1. SX(f) is real and SX(f) � 0
2. SX(-f) = SX(f) 
3. AX(0) = � SX(�) d�
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Spectral density: Summary
� Energy signals:

� Energy spectral density (ESD): 

� Power signals:

� Power spectral density (PSD):

� Random process:
� Power spectral density (PSD): 

Note: we have used f for � and Gx for Sx



Mohamed Khedr12

Properties of an autocorrelation function

� For real-valued (and WSS for random signals):
1. Autocorrelation and spectral density form a Fourier 

transform pair. RX(τ) � SX(�)
2. Autocorrelation is symmetric around zero. RX(-τ) = RX(τ) 
3. Its maximum value occurs at the origin. |RX(τ)| � RX(0) 
4. Its value at the origin is equal to the average power or 

energy.
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Noise in communication systems
� Thermal noise is described by a zero-mean Gaussian random process, 

n(t).
� Its PSD is flat, hence, it is called white noise. IID gaussian. 

[w/Hz]

Probability density function

Power spectral 
density

Autocorrelation 
function
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White Gaussian Noise
� White: 

� Power spectral density (PSD) is the same, i.e. flat, for all frequencies of 
interest (from dc to 1012 Hz)

� Autocorrelation is a delta function => two samples no matter however 
close are uncorrelated.
� N0/2 to indicate two-sided PSD
� Zero-mean gaussian completely characterized by its variance (σ2)
� Variance of filtered noise is finite = N0/2

� Similar to “white light” contains equal amounts of all frequencies in the 
visible band of EM spectrum

� Gaussian + uncorrelated => i.i.d.
� Affects each symbol independently: memoryless channel

� Practically: if b/w of noise is much larger than that of the system: good 
enough
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Signal transmission w/ linear systems (filters)

� Deterministic signals:
� Random signals:

Input Output
Linear system

Ideal distortion less transmission:
• All the frequency components of the signal not only arrive 
with an identical time delay, but also amplified or attenuated 
equally. 
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(Deterministic) Systems with Stochastic Inputs
A deterministic system1 transforms each input waveform              into
an output waveform                                   by operating only on the 
time variable t. Thus a set of realizations at the input corresponding 
to a process X(t) generates a new set of realizations                at the 
output associated with a new process Y(t).

),( itX ξ
)],([),( ii tXTtY ξξ =

)},({ ξtY

Our goal is to study the output process statistics in terms of the input
process statistics and the system function.

1A stochastic system on the other hand operates on both the variables t and .ξ
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Fig. 14.3
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Deterministic Systems

Systems with Memory

Time-Invariant
systems

Linear systems

Linear-Time Invariant
(LTI) systems

Memoryless Systems
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Time-varying

systems
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LTI system
h(t)

Linear system

wide-sense 
stationary process

strict-sense 
stationary process

Gaussian
process (also
stationary)

wide-sense 
stationary process.

strict-sense
stationary process

Gaussian process
(also stationary)

)(tX )(tY

LTI system
h(t)

)(tX

)(tX

)(tY

)(tY

(a)

(b)

(c)

LTI Systems: WSS input good enough
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White Noise Process & LTI Systems
W(t) is said to be a white noise process if 

i.e.,  E[W(t1) W*(t2)] = 0  unless t1 = t2.
W(t) is said to be wide-sense stationary (w.s.s) white noise 
if E[W(t)] = constant, and 

If W(t) is also a Gaussian process (white Gaussian process), then all 
of its samples are independent random variables

),()(),( 21121 tttqttR
WW

−= δ

).()(),( 2121 τδδ qttqttR
WW

=−=

White noise
W(t)

LTI
h(t)

Colored noise
( ) ( ) ( )N t h t W t= ∗
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Narrowband Noise Representation

� The noise process appearing at the output of a narrowband 
filter is called narrowband noise.

� Representations of narrowband noise
� A pair of component called the in-phase and quadrature

components.
� Two other components called the envelop and phase.
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Representation of Narrowband Noise in Terms of In-Phase 
and Quadrature Components

� Consider a narrowband noise       of bandwidth 2B centered on frequency.
� We may represent n(t) in the canonical (standard) form:

where,         is in-phase component of         and          is quadrature
component of       .

)2sin()()2cos()()( tftntftntn cQcI ππ −=
)(tnI

)(tnQ)(tn
)(tn

)(tn
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� and               have important properties:
� and           have zero mean.
� is Gaussian, then          and           are jointly Gaussian.
� is stationary, then          and          are jointly stationary.
� Both          and             have the same power spectral density.

� and          have the same variance as 

)(tnI )(tnQ

)(tnI )(tnQ

)(tn )(tnI )(tnQ

)(tn )(tnI )(tnQ

)(tnI )(tnQ

�
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� ++−
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QI otherwise
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Mohamed Khedr23



Mohamed Khedr24

Representation of Narrowband Noise in Terms of 
Envelope and Phase Components
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� Figure Illustrating the coordinate system for 
representation of narrowband noise: (a) in terms of in-
phase and quadrature components, and (b) in terms of 
envelope and phase.

ψcosrnI =
ψsinrnQ =

ψrdrddndn QI =
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Sine Wave Plus Narrowband Noise



Mohamed Khedr30



Mohamed Khedr31



Mohamed Khedr32

����������	
���

�������
����
��
��������������	
���

���

���������������	
���

�����	����������
����
��
		������������	������



Mohamed Khedr33

Demodulation and Detection

� Major sources of errors:
� Thermal noise (AWGN)�

� disturbs the signal in an additive fashion (Additive)
� has flat spectral density for all frequencies of interest (White)�
� is modeled by Gaussian random process (Gaussian Noise) 

� Inter-Symbol Interference (ISI)�
� Due to the filtering effect of transmitter, channel and receiver, symbols 

are “smeared”. 

Format Pulse 
modulate

Bandpass
modulate

Format Detect Demod.
& sample

)(tsi)(tgiim

im̂ )(tr)(Tz

channel
)(thc

)(tn

transmitted symbol

estimated symbol

Mi ,,1 �=
M-ary modulation
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Example: Impact of the channel
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Example: Channel impact …

)75.0(5.0)()( Tttthc −−= δδ
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Receiver tasks

� Demodulation and sampling: 
�Waveform recovery and preparing the received 

signal for detection:
�Improving the signal power to the noise power 

(SNR) using matched filter
�Reducing ISI using equalizer 
�Sampling the recovered waveform 

� Detection:
�Estimate the transmitted symbol based on the 

received sample
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Receiver structure

Frequency
down-conversion

Receiving 
filter

Equalizing
filter

Threshold 
comparison

For bandpass signals Compensation for 
channel induced ISI

Baseband pulse
(possibly distored)� Sample

(test statistic)�
Baseband pulseReceived waveform

Step 1 – waveform to sample transformation Step 2 – decision making

)(tr
)(Tz

im̂

Demodulate & Sample Detect
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Baseband and Bandpass

� Bandpass model of detection process is equivalent to 
baseband model because:
�The received bandpass waveform is first 

transformed to a baseband waveform.

�Equivalence theorem:
�Performing bandpass linear signal processing 

followed by heterodyning the signal to the 
baseband, yields the same results as 
heterodyning the bandpass signal to the 
baseband , followed by a baseband linear signal 
processing.
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Steps in designing the receiver

� Find optimum solution for receiver design with the 
following goals: 
1. Maximize SNR
2. Minimize ISI

� Steps in design:
� Model the received signal
� Find separate solutions for each of the goals.

� First, we focus on designing a receiver which maximizes the 
SNR.
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Design the receiver filter to maximize the SNR

� Model the received signal

� Simplify the model:
�Received signal in AWGN

)(thc
)(tsi

)(tn

)(tr

)(tn

)(tr)(tsi
Ideal channels

)()( tthc δ=

AWGN

AWGN

)()()()( tnthtstr ci +∗=

)()()( tntstr i +=
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Matched filter receiver 

� Problem:
� Design the receiver filter        such that the SNR is maximized at the 

sampling time when                                   is transmitted.
� Solution:

� The optimum filter, is the Matched filter, given by

which is the time-reversed and delayed version of the conjugate of the 
transmitted signal

)(th

)()()( * tTsthth iopt −==
)2exp()()()( * fTjfSfHfH iopt π−==

Mitsi ,...,1 ),( =

T0 t

)(tsi

T0 t

)()( thth opt=
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Example of matched filter

T t T t T t0 2T

)()()( thtsty opti ∗=
2A)(tsi )(thopt

T t T t T t0 2T
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Properties of the matched filter
The Fourier transform of a matched filter output with the matched signal as input is, 
except for a time delay factor, proportional to the ESD of the input signal.

The output signal of a matched filter is proportional to a shifted version of the 
autocorrelation function of the input signal to which the filter is matched.

The output SNR of a matched filter depends only on the ratio of the signal energy to the 
PSD of the white noise at the filter input.

Two matching conditions in the matched-filtering operation:
spectral phase matching that gives the desired output peak at time T.
spectral amplitude matching that gives optimum SNR to the peak value.

)2exp(|)(|)( 2 fTjfSfZ π−=
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Correlator receiver

� The matched filter output at the sampling time, can be 
realized as the correlator output.
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Implementation of matched filter receiver

�
�
�
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Bank of M matched filters

Matched filter output:
Observation

vector
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Implementation of correlator receiver

dttstrz i

T

i )()(
0
�=

�
T

0

)(1 ts∗

�
T

0

)(ts M
∗

�
�
�




�

�
�
�

�

�

Mz

z

�

1

z=
)(tr

)(1 Tz

)(TzM

z

Bank of M correlators

Correlators output:
Observation

vector
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Implementation example of matched filter receivers

�
�
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Bank of 2 matched filters
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Questions?


