EC 7xx Advanced Digital Communications Spring 2008

Mohamed Essam Khedr Department of Electronics and Communications

Random Process and Optimum Detection

http://webmail.aast.edu/~khedr

Random Sequences and Random Processes

Illustration of the concept of *random sequence* $X(n, \zeta)$ where the ζ domain (i.e., the sample space Ω) consists of just 10 values. (Samples connected for plot.)

Random process

 \Box A random process is ^a collection of time functions, or signals, corresponding to various outcomes of ^a random experiment. For each outcome, there exists ^a deterministic function, which is called ^a sample function or ^a realization.

Specifying ^a Random Process

 A random process is defined by all its joint CDFs \Box $p(X(t_0) \leq x_0, X(t_1) \leq x_1, \ldots, X(t_n) \leq x_n).$

for *all possible sets of sample times* 50 $X(n_k^c)$ minim 100 8 80 9 60 40 10 Time index n $\mathbf 0$ L_{n} \cdots n **…** t_1 t_2 t_{0}

Wide Sense Stationarity (wss)

 $A_X(t,t+\tau) =$

 $E[X(t)] = E[X(t - t)] = E[X(0)] = \mu_X$.

 $\boxed{\mathbf{E}[X(t-t)X(t+\tau-t)]} = \mathbf{E}[X(0)X(\tau)] \stackrel{\triangle}{=} A_X(\tau)$

- **Keep only above two properties** ($2nd$ order stationarity)...
	- **□** Don't insist that higher-order moments or higher order joint CDFs be unaffected by lag T
- \Box With LTI systems, we will see that WSS inputs lead to WSS outputs,
	- **I** In particular, if a WSS process with PSD $S_X(f)$ is passed through a linear timeinvariant filter with frequency response *H*(*f*), then the filter output is also ^a WSS process with power spectral density $|H(f)|^2S_X(f)$.
- \Box Gaussian $w.s.s. = Gaussian stationary process (since it only has 2nd order)$ moments)

Ergodicity

- \Box Time averages ⁼ Ensemble averages
- [i.e. "*ensemble*" averages like mean/autocorrelation can be computed as "*timeaverages*" over ^a single realization of the random process]
- \Box A random process: ergodic in *mean* and *autocorrelation* (like w.s.s.) if

Autocorrelation: Summary

 \Box Autocorrelation of an energy signal

$$
R_x(\tau) = x(\tau) \star x^*(-\tau) = \int_{-\infty}^{\infty} x(t)x^*(t-\tau)dt
$$

 \Box Autocorrelation of ^a power signal

$$
R_x(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^*(t - \tau) dt
$$

 \Box For a periodic signal:

$$
R_x(\tau) = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) x^*(t - \tau) dt
$$

 \Box Autocorrelation of ^a random signal

$$
R_X(t_i, t_j) = \mathsf{E}[X(t_i)X^*(t_j)]
$$

D For a WSS process:

$$
R_X(\tau) = \mathbb{E}[X(t)X^*(t-\tau)]
$$

Power Spectral Density (PSD)

The power spectral density (PSD) of a WSS process is defined as the Fourier transform of its autocorrelation function with respect to τ :

$$
S_X(f) = \int_{-\infty}^{\infty} A_X(\tau) e^{-j2\pi f \tau} d\tau.
$$
 (B.26)

The autocorrelation can be obtained from the PSD through the inverse transform:

$$
A_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{j2\pi f \tau} df.
$$
 (B.27)

The PSD takes its name from the fact that the expected power of a random process $X(t)$ is the integral of its PSD:

$$
\mathbf{E}[X^2(t)] = A_X(0) = \int_{-\infty}^{\infty} S_X(f) df,
$$
\n(B.28)

1. S_X(f) is real and S_X(f) \geq 0 2. $S_X(-f) = S_X(f)$ 3. $A_X(0) = \int S_X(\omega) d\omega$

Spectral density: Summary

Energy signals:

 $E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df \quad X(f) = \mathcal{F}[x(t)]$

 \Box Energy spectral density (ESD):

$$
\Big|\quad \Psi_x(f)=|X(f)|^2\ \Big|
$$

 \Box **Power signals:**

$$
P_x = \frac{1}{T_0} \int_{T_0/2}^{T_0/2} |x(t)|^2 dt = \sum_{n=-\infty}^{\infty} |c_n|^2 \qquad \{c_n\} = \mathcal{F}[x(t)]
$$

Power spectral density (PSD):

$$
G_x(f) = \sum_{n=-\infty}^{\infty} |c_n|^2 \delta(f - nf_0) \qquad f_0 = 1/T_0
$$

 \Box **Random process**:

Q Power spectral density (PSD):

$$
G_X(f) = \mathcal{F}[R_X(\tau)]
$$

Properties of an autocorrelation function

- \Box For real-valued (and WSS for random signals):
	- 1. Autocorrelation and spectral density form ^a Fourier transform pair. $R_X(\tau) \leftrightarrow S_X(\omega)$
	- 2.Autocorrelation is symmetric around zero. $R_X(-\tau) = R_X(\tau)$
	- 3.Its maximum value occurs at the origin. $|R_X(\tau)| \le R_X(0)$
	- 4.Its value at the origin is equal to the average power or **energy.** $\mathbf{E}[X^2(t)] = A_X(0) = \int_{-\infty}^{\infty} S_X(f) df$,

Noise in communication systems

- \Box Thermal noise is described by ^a zero-mean Gaussian random process, $n(t)$.
- \Box Its PSD is flat, hence, it is called white noise. IID gaussian.

White Gaussian Noise

\Box White:

- *Power spectral density (PSD)* is the same, i.e. *flat*, for all frequencies of interest (from dc to 10^{12} Hz)
- **□** Autocorrelation is a *delta* function => two samples no matter however close are uncorrelated.
	- \Box N₀/2 to indicate two-sided PSD
	- \Box Zero-mean gaussian completely characterized by its variance (σ^2)

 \Box Variance of filtered noise is finite = N₀/2

- **□** Similar to "white light" contains equal amounts of all frequencies in the visible band of EM spectrum
- Gaussian + uncorrelated \Rightarrow i.i.d.
	- **Example 3 Affects each symbol independently: memoryless channel**
- \Box Practically: if b/w of noise is much larger than that of the system: good enough

Signal transmission w/ linear systems (filters)

Input
$$
\begin{array}{c}\nx(t) \\
X(f) \n\end{array}
$$
 \longrightarrow $\begin{array}{c}\nh(t) \\
H(f) \n\end{array}$ \longrightarrow $\begin{array}{c}\ny(t) \\
Y(f) \n\end{array}$ Output\n
\nLinear system\n
\nD Deterministic signals: $\begin{array}{c}\nY(f) = X(f)H(f) \\
G_Y(f) = G_X(f)|H(f)|^2\n\end{array}$

Ideal distortion less transmission:

• All the frequency components of the signal not only arrive with an *identical time delay*, but also *amplified or attenuated equally*.

$$
y(t) = Kx(t - t_0) \text{ or } H(f) = Ke^{-j2\pi ft_0}
$$

(Deterministic) Systems with Stochastic Inputs

A deterministic system¹ transforms each input waveform $X(t, \xi)$ into an output waveform $Y(t, \xi) = T[X(t, \xi)]$ by operating <u>only on the</u> time variable *^t*. Thus ^a set of realizations at the input corresponding to a process $X(t)$ generates a new set of realizations $\{Y(t,\xi)\}\)$ at the output associated with ^a new process *Y*(*t*).

Our goal is to study the <u>output process statistics</u> in terms of the input process statistics and the system function.

¹A stochastic system on the other hand operates on both the variables *t* and ξ .

LTI Systems: WSS input good enough

White Noise Process & LTI Systems

W(*t*) is said to be ^a white noise process if

 $R_{ww}(t_1, t_2) = q(t_1) \delta(t_1 - t_2),$

i.e., $E[W(t_1) \ W^*(t_2)] = 0$ unless $t_1 = t_2$. *W*(*t*) is said to be *wide-sense stationary (w.s.s) white noise* if *E***[***W***(***t***)] ⁼ constant**, and

$$
R_{ww}(t_1,t_2)=q\delta(t_1-t_2)=q\delta(\tau).
$$

If *W*(*t*) is also ^a Gaussian process (white Gaussian process), then all of its samples are independent random variables

Narrowband Noise Representation

- \Box The noise process appearing at the output of ^a narrowband filter is called *narrowband noise*.
- **Q** Representations of narrowband noise
	- ^A pair of componen^t called the *in-phase* and *quadrature* components.
	- Two other components called the *envelop* and *phase*.

Representation of Narrowband Noise in Terms of In-Phase and Quadrature Components

- \Box **□** Consider a narrowband noise $n(t)$ of bandwidth 2B centered on frequency.
- \Box We may represent $n(t)$ in the canonical (standard) form:

$$
n(t) = nI(t)\cos(2\pi fct) - nQ(t)\sin(2\pi fct)
$$

where, $n_I(t)$ is *in-phase* component of $n(t)$ and $n_Q(t)$ is *quadrature* component of $n(t)$

 \Box *n*_{*I*}(*t*) and *n*_{*Q*}(*t*) have important properties:

- \Box *n*_{*I*}(*t*) and *n*_{*Q*}(*t*) have zero mean.
- \Box *n*(*t*) is Gaussian, then $n_I(t)$ and $n_Q(t)$ are jointly Gaussian.
- \Box *n*(*t*) is stationary, then $n_1(t)$ and $n_2(t)$ are jointly stationary.
- \Box Both $n_1(t)$ and $n_2(t)$ have the same power spectral density.

$$
S_{N_I}(f) = S_{N_Q}(f) = \begin{cases} S_N(f - f_c) + S_N(f + f_c), & -B \le f \le B \\ 0, & \text{otherwise} \end{cases}
$$

 \Box *n*_{*I*}(*t*) and *n*_{*Q*}(*t*) have the same variance as *n*(*t*)

The cross-spectral density of the $n_f(t)$ and $n_Q(t)$ is purely \mathbf{r} imaginary:

$$
S_{N_I N_Q}(f) = -S_{N_Q N_I}(f)
$$

=
$$
\begin{cases} j[S_N(f+f_c)-S_N(f-f_c)], & -B \le f \le B \\ 0, & otherwise \end{cases}
$$

If $n(t)$ is Gaussian and its power spectral density $S_N(t)$ is symmetric about the mid-band frequency f_{c} , then $n_I(t)$ and $n_Q(t)$ are statistically independent.

Representation of Narrowband Noise in Terms of Envelope and Phase Components

Here we represent $n(t)$ in terms of envelope and phase components:

 $n(t) = r(t) \cos[2\pi f_t + \psi(t)]$

where, $r(t) = [n_1^2(t) + n_2^2(t)]^{1/2}$ and $\psi(t) = \tan^{-1} \left[\frac{n_2(t)}{n_1(t)} \right]$

 $r(t)$ is called the *envelope* of $n(t)$, and the $\psi(t)$ is called the *phase* of $n(t)$.

- **The probability distributions of** $r(t)$ and $\psi(t)$ may be obtained from those of $n_i(t)$ and $n_o(t)$ as follows.
- **EXECUTE:** Let N_I and N_O denote the random variables obtained by the sample functions $n_r(t)$ and $n_o(t)$, respectively.
- **Then,** N_I and N_Q are independent Gaussian random variables of zero mean and variance σ^2 .
- So, we may express their joint probability density function by

$$
f_{N_I,N_Q}(n_I, n_Q) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{n_I^2 + n_Q^2}{2\sigma^2}\right)
$$

Figure Illustrating the coordinate system for representation of narrowband noise: (*a*) in terms of inphase and quadrature components, and (*b*) in terms of envelope and phase.

- Now, let R and Ψ denote the random variables obtained by the sample functions $r(t)$ and $\psi(t)$, respectively.
- **Then we find the joint probability density function of** R **and** is Ψ

$$
f_{R,\Psi}(r,\psi) = \frac{r}{2\pi\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) \tag{1.113}
$$

- From (1.113), the random variables R and Ψ are \mathbf{r} statistically independent.
- Therefore, $\overline{}$

$$
f_{\Psi}(\psi) = \begin{cases} \frac{1}{2\pi}, & 0 \leq \psi \leq 2\pi \\ 0, & \text{elsewhere} \end{cases}
$$

$$
f_R(r) = \begin{cases} \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right), & r \ge 0\\ 0, & \text{elsewhere} \end{cases}
$$

- Rauleigh distribution (Figure 1.22) : A random variable having \mathbf{r} the probability density function of Equation (1.115).
- Let, $v = r/\sigma$ then the normalized form is

$$
f_{v}(v) = \begin{cases} v \exp\left(-\frac{v^{2}}{2}\right), & v \ge 0\\ 0, & elsewhere \end{cases}
$$

Sine Wave Plus Narrowband Noise

Add the sinusoidal wave $A\cos(2\pi f t)$ to the narrowband noise $n(t)$.

$$
x(t) = A\cos(2\pi f_c t) + n(t)
$$

Use in-phase and quadrature components for $n(t)$

$$
x(t) = nI'(t)\cos(2\pi fct) - nQ(t)\sin(2\pi fct)
$$

where, $n_f'(t) = A + n_f(t)$

• We assume that $n(t)$ is Gaussian with zero mean and variance σ^2 , then we find that:

Joint probability density function of N_I and N_O **COL**

$$
f_{N_I;N_Q}(n_I',n_Q) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(n_I'-A)^2 + n_Q^2}{2\sigma^2}\right)
$$

Joint probability density function of R and Ψ $\mathcal{L}_{\rm{max}}$

$$
f_{R,\Psi}(r,\psi) = \frac{r}{2\pi\sigma^2} \exp\left(-\frac{r^2 + A^2 - 2Ar\cos\psi}{2\sigma^2}\right)
$$

Now we are interested in the probability density function of R $\mathcal{L}_{\mathcal{A}}$

J

$$
f_R(r) = \int_0^{2\pi} f_{R,\Psi}(r,\psi) d\psi
$$

= $\frac{r}{2\pi\sigma^2} \exp\left(-\frac{r^2 + A^2}{2\sigma^2}\right) \int_0^{2\pi} \exp\left(\frac{Ar}{\sigma^2} \cos\psi\right) d\psi$ (1.126)

modified Bessel function of the first kind of zero order

$$
I_0(x) = \frac{1}{2\pi} \int_0^{2\pi} \exp(x \cos \psi) d\psi, \quad x = Ar / \sigma^2
$$

Rewrite (1.126) \mathbf{r}

$$
f_R(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2 + A^2}{2\sigma^2}\right) I_0\left(\frac{Ar}{\sigma^2}\right)
$$

This is called the Rician distribution. (Figure 1.23) \blacksquare

Let $v = r / \sigma$, $a = A / \sigma$, then the normalized form is $\mathcal{L}_{\mathcal{A}}$

$$
f_V(v) = v \exp\left(-\frac{v^2 + a^2}{2}\right) I_0(av)
$$

The envelope distribution is approximately Gaussian when a is large

- \Box Major sources of errors:
	- \Box Thermal noise (AWGN)

 \Box disturbs the signal in an additive fashion (Additive)

□ has flat spectral density for all frequencies of interest (White)

□ is modeled by Gaussian random process (Gaussian Noise)

- Inter-Symbol Interference (ISI)
	- **□** Due to the filtering effect of transmitter, channel and receiver, symbols are "smeared".

Example: Impact of the channel

Example: Channel impact …

Receiver tasks

Demodulation and sampling:

■Waveform recovery and preparing the received signal for detection:

 \Box Improving the signal power to the noise power (SNR) using matched filter

Reducing ISI using equalizer

□Sampling the recovered waveform

D Detection:

□ Estimate the transmitted symbol based on the received sample

Receiver structure

Baseband and Bandpass

□ Bandpass model of detection process is equivalent to baseband model because:

The received bandpass waveform is first transformed to ^a baseband waveform.

Equivalence theorem:

and Mohamed Khedr Nohamed Khedr **Performing bandpass linear signal processing** followed by heterodyning the signal to the baseband, yields the same results as heterodyning the bandpass signal to the baseband , followed by ^a baseband linear signal processing.

Steps in designing the receiver

- \Box Find optimum solution for receiver design with the following goals:
	- 1. Maximize SNR
	- 2. Minimize ISI
- \Box Steps in design:
	- \Box Model the received signal
	- \Box Find separate solutions for each of the goals.
- \Box First, we focus on designing ^a receiver which maximizes the SNR.

Design the receiver filter to maximize the SNR

• Model the received signal

$$
r(t) = si(t) * hc(t) + n(t)
$$

Simplify the model:

Received signal in AWGN

Matched filter receiver

\Box Problem:

 \Box Design the receiver filter $h(t)$ such that the SNR is maximized at the sampling time when $s_i(t)$, $i = 1,..., M$ is transmitted.

 \Box Solution:

 \Box The optimum filter, is the Matched filter, given by

$$
h(t) = h_{opt}(t) = s_i^{*}(T - t)
$$

$$
H(f) = H_{opt}(f) = S_i^{*}(f) \exp(-j2\pi f T)
$$

which is the time-reversed and delayed version of the conjugate of the transmitted signal

Example of matched filter

Properties of the matched filter

The Fourier transform of ^a matched filter output with the matched signal as input is, except for a time delay factor, proportional to the **ESD** of the input signal.

$$
Z(f) = |S(f)|^2 \exp(-j2\pi f T)
$$

The output signal of ^a matched filter is proportional to ^a shifted version of the autocorrelation function of the input signal to which the filter is matched.

$$
z(t) = R_s(t - T) \Rightarrow z(T) = R_s(0) = E_s
$$

The output SNR of ^a matched filter depends only on the ratio of the signal energy to the PSD of the white noise at <u>the filter input</u>.

$$
\max\left(\frac{S}{N}\right)_T = \frac{E_s}{N_0/2}
$$

Two matching conditions in the matched-filtering operation:

spectral phase matching that gives the desired output peak at time *T.*

spectral amplitude matching that gives optimum SNR to the peak value.

Correlator receiver

The matched filter output at the sampling time, can be realized as the correlator output.

$$
z(T) = h_{opt}(T) * r(T)
$$

=
$$
\int_{0}^{T} r(\tau) s_i^{*}(\tau) d\tau = < r(t), s(t) >
$$

Implementation of matched filter receiver

Bank of M matched filters

Implementation of correlator receiver

Bank of M correlators

Implementation example of matched filter receivers

Questions?

