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Demodulation and Detection

� Major sources of errors:
� Thermal noise (AWGN)�

� disturbs the signal in an additive fashion (Additive)
� has flat spectral density for all frequencies of interest (White)�
� is modeled by Gaussian random process (Gaussian Noise) 

� Inter-Symbol Interference (ISI)�
� Due to the filtering effect of transmitter, channel and receiver, symbols 

are “smeared”. 
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Example: Impact of the channel
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Example: Channel impact …
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Receiver tasks

� Demodulation and sampling: 
�Waveform recovery and preparing the received 

signal for detection:
�Improving the signal power to the noise power 

(SNR) using matched filter
�Reducing ISI using equalizer 
�Sampling the recovered waveform 

� Detection:
�Estimate the transmitted symbol based on the 

received sample
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Receiver structure

Frequency
down-conversion

Receiving 
filter

Equalizing
filter

Threshold 
comparison

For bandpass signals Compensation for 
channel induced ISI

Baseband pulse
(possibly distored)� Sample

(test statistic)�
Baseband pulseReceived waveform

Step 1 – waveform to sample transformation Step 2 – decision making
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Baseband and Bandpass

� Bandpass model of detection process is equivalent to 
baseband model because:
�The received bandpass waveform is first 

transformed to a baseband waveform.

�Equivalence theorem:
�Performing bandpass linear signal processing 

followed by heterodyning the signal to the 
baseband, yields the same results as 
heterodyning the bandpass signal to the 
baseband , followed by a baseband linear signal 
processing.
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Steps in designing the receiver

� Find optimum solution for receiver design with the 
following goals: 
1. Maximize SNR
2. Minimize ISI

� Steps in design:
� Model the received signal
� Find separate solutions for each of the goals.

� First, we focus on designing a receiver which maximizes the 
SNR.
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Design the receiver filter to maximize the SNR

� Model the received signal

� Simplify the model:
�Received signal in AWGN
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Ideal channels

)()( tthc δ=

AWGN

AWGN

)()()()( tnthtstr ci +∗=

)()()( tntstr i +=



Mohamed Khedr11

Matched filter receiver 

� Problem:
� Design the receiver filter        such that the SNR is maximized at the 

sampling time when                                   is transmitted.
� Solution:

� The optimum filter, is the Matched filter, given by

which is the time-reversed and delayed version of the conjugate of the 
transmitted signal
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Example of matched filter
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Correlator receiver

� The matched filter output at the sampling time, can be 
realized as the correlator output.
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Implementation of matched filter receiver
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Implementation of correlator receiver
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Implementation example of matched filter receivers
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GRAM – SCHMIDT ORTHOGONALIZATION PROCEDURE:

In case of Gram-Schmidt Orthogonalization procedure, any set  
of ‘m’ energy signals {Si(t)} can be represented by a linear 
combination of ‘N’ orthonormal  basis functions where 
N�m.  That is we may represent the given set of real valued 
energy signals S1(t), S2(t). . . . . . . Sm(t) each of duration T 
seconds in the form 
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The co-efficient Sij may be viewed as the jth
element of the N – dimensional Vector Si
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Let )(4)(3 211 ttS φφ +=

)(2)( 212 ttS φφ +−=

�
�

�
�
�

�
=

4
3

1S �
�

�
�
�

�−
=

2
1

2SVector



Mohamed Khedr21

� To find an orthonormal basis functions for a given 
set of signals, the Gram-Schmidt procedure can be 
used.

� Gram-Schmidt procedure:
� Given a signal set              , compute an orthonormal basis

1. Define
2. For                   compute

If               let
If  , do not assign any basis function.

3. Renumber the basis functions such that basis is

� This is only necessary if             for any i in step 2. 
� Note that 
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Signal space

� What is a signal space?
� Vector representations of signals in an N-dimensional 

orthogonal space
� Why do we need a signal space?

� It is a means to convert signals to vectors and vice versa.
� It is a means to calculate signals energy and Euclidean 

distances between signals.
� Why are we interested in Euclidean distances between signals?

� For detection purposes: The received signal is transformed 
to a received vectors. The signal which has the minimum 
distance to the received signal is estimated as the 
transmitted signal.
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Schematic example of a signal space
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Signal space

� To form a signal space, first we need to know the 
inner product between two signals (functions):
� Inner (scalar) product:

�Properties of inner product:

�
∞
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Signal space …
� The distance in signal space is measure by calculating the 

norm.
� What is norm?

� Norm of a signal:

� Norm between two signals:

� We refer to the norm between two signals as the Euclidean 
distance between two signals.
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Example of distances in signal space
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Orthogonal signal space

� N-dimensional orthogonal signal space is characterized by N 
linearly independent functions                called basis functions. 
The basis functions must satisfy the orthogonality condition

where

� If all          , the signal space is orthonormal. 
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Example of an orthonormal basis
�Example: 2-dimensional orthonormal signal space

�Example: 1-dimensional orthonormal signal space
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Signal space …
� Any arbitrary finite set of waveforms 

where each member of the set is of duration T, can be expressed 
as a linear combination of N orthonogal waveforms               
where     .

where
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Signal space …
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Example of projecting signals to an 
orthonormal signal space
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Example of Gram-Schmidt procedure

� Find the basis functions and plot the signal space for the following 
transmitted signals:

� Using Gram-Schmidt procedure:
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Implementation of the matched filter receiver
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Implementation of the correlator receiver
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Example of matched filter receivers using 
basic functions

� Number of matched filters (or correlators) is reduced by 1 compared to using 
matched filters (correlators) to the transmitted signal.

� Reduced number of filters (or correlators)�
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White noise in the orthonormal signal space

� AWGN, n(t), can be expressed as

)(~)(ˆ)( tntntn +=

Noise projected on the signal space 
which impacts the detection process.

Noise outside on the signal space 
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Statistics of the observation Vector  
� AWGN channel model:

� Signal vector                                  is deterministic.
� Elements of noise vector                          are i.i.d Gaussian 

random variables with zero-mean and variance         .  The 
noise vector pdf is

� The elements of observed vector                              are
independent Gaussian random variables. Its pdf is
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Detection

� Optimum decision rule (maximum a posteriori 
probability):

�Applying Bayes’ rule gives:
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Detection …

� Partition the signal space into M decision regions,            
such that 
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Detection (ML rule)�

� For equal probable symbols, the optimum decision rule 
(maximum posteriori probability) is simplified to:

or equivalently:

which is known as maximum likelihood.
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Detection (ML)…

� Partition the signal space into M decision regions,           
. 

� Restate the maximum likelihood decision rule as 
follows:
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Detection rule (ML)…

� It can be simplified to:

or equivalently: 
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Maximum likelihood detector block 
diagram
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Schematic example of the ML decision regions
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Average probability of symbol error
� Erroneous decision: For the transmitted symbol      or equivalently 

signal vector    , an error in decision occurs if the observation vector    does not 
fall inside region    .
� Probability of erroneous decision for a transmitted symbol

or equivalently

� Probability of correct decision for a transmitted symbol
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Av. prob. of symbol error … 
� Average probability of symbol error :

�For equally probable symbols:
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Example for binary PAM
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Union bound

� Let        denote that the observation vector     is closer to the symbol
vector      than       , when                 is transmitted.

� depends only on      and      .

� Applying Union bounds yields
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Union bound:

Example of union bound
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Upper bound based on minimum distance
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Eb/No figure of merit in digital 
communications

� SNR or S/N is the average signal power to the average noise 
power. SNR should be modified in terms of bit-energy in 
DCS, because: 
� Signals are transmitted within a symbol duration and 

hence, are energy signal (zero power).

� A merit at bit-level facilitates comparison of different 
DCSs transmitting different number of bits per symbol.
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Example of Symbol error prob. For PAM 
signals

)(1 tψ
0

1s2s

bEbE−

Binary PAM

)(1 tψ0
2s3s

5
2 bE

5
6 bE

5
6 bE−

5
2 bE−

4s 1s
4-ary PAM

T t

)(1 tψ

T
1

0



Mohamed Khedr53

Questions?


