EC 7xx Advanced Digital Communications Spring 2008

Mohamed Essam Khedr Department of Electronics and Communications

Digital Signal Representation **http://webmail.aast.edu/~khedr**

- \Box Major sources of errors:
	- \Box Thermal noise (AWGN)

 \Box disturbs the signal in an additive fashion (Additive)

□ has flat spectral density for all frequencies of interest (White)

□ is modeled by Gaussian random process (Gaussian Noise)

- Inter-Symbol Interference (ISI)
	- **□** Due to the filtering effect of transmitter, channel and receiver, symbols are "smeared".

Example: Impact of the channel

Example: Channel impact …

Receiver tasks

Demodulation and sampling:

■Waveform recovery and preparing the received signal for detection:

 \Box Improving the signal power to the noise power (SNR) using matched filter

Reducing ISI using equalizer

□Sampling the recovered waveform

D Detection:

□ Estimate the transmitted symbol based on the received sample

Receiver structure

Baseband and Bandpass

□ Bandpass model of detection process is equivalent to baseband model because:

The received bandpass waveform is first transformed to ^a baseband waveform.

Equivalence theorem:

S Mohamed Khedr 8 **Performing bandpass linear signal processing** followed by heterodyning the signal to the baseband, yields the same results as heterodyning the bandpass signal to the baseband , followed by ^a baseband linear signal processing.

Steps in designing the receiver

- \Box Find optimum solution for receiver design with the following goals:
	- 1. Maximize SNR
	- 2. Minimize ISI
- \Box Steps in design:
	- \Box Model the received signal
	- \Box Find separate solutions for each of the goals.
- \Box First, we focus on designing ^a receiver which maximizes the SNR.

Design the receiver filter to maximize the SNR

• Model the received signal

$$
r(t) = si(t) * hc(t) + n(t)
$$

Simplify the model:

Received signal in AWGN

Matched filter receiver

\Box Problem:

 \Box Design the receiver filter $h(t)$ such that the SNR is maximized at the sampling time when $s_i(t)$, $i = 1,..., M$ is transmitted.

 \Box Solution:

 \Box The optimum filter, is the Matched filter, given by

$$
h(t) = h_{opt}(t) = s_i^{*}(T - t)
$$

$$
H(f) = H_{opt}(f) = S_i^{*}(f) \exp(-j2\pi f T)
$$

which is the time-reversed and delayed version of the conjugate of the transmitted signal

Example of matched filter

Correlator receiver

The matched filter output at the sampling time, can be realized as the correlator output.

$$
z(T) = h_{opt}(T) * r(T)
$$

=
$$
\int_{0}^{T} r(\tau) s_i^{*}(\tau) d\tau = < r(t), s(t) >
$$

Implementation of matched filter receiver

Bank of M matched filters

Implementation of correlator receiver

Bank of M correlators

Implementation example of matched filter receivers

GRAM – SCHMIDT ORTHOGONALIZATION PROCEDURE:

In case of Gram-Schmidt Orthogonalization procedure, any set of 'm' energy signals $\{S_i(t)\}\)$ can be represented by a linear combination of 'N' orthonormal basis functions where N
Im. That is we may represent the given set of real valued energy signals $S_1(t)$, $S_2(t)$ $S_m(t)$ each of duration T seconds in the form

$$
S_1(t) = S_{11}\phi_1(t) + S_{12}\phi_2(t) + \dots + S_{1N}\phi_N(t)
$$

\n
$$
S_2(t) = S_{21}\phi_1(t) + S_{22}\phi_2(t) + \dots + S_{2N}\phi_N(t)
$$

\n
$$
S_m(t) = S_{m1}\phi_1(t) + S_{m2}\phi_2(t) + \dots + S_{mN}\phi_N(t)
$$

$$
S_i(t) = \sum_{j=1}^{N} S_{ij} \phi_j(t) \begin{cases} 0 \le t \le T \\ i = 1, 2, 3, ..., m \end{cases}
$$

$$
S_{ij}(t) = \int_{0}^{T} S_i(t) \phi_j(t) \begin{cases} i = 1, 2, 3, ..., m \\ j = 1, 2, 3, ..., n \end{cases}
$$

The Second Second

The co-efficient $\mathsf{S}_{\mathsf{i}\mathsf{j}}$ may be viewed as the j $^{\mathsf{th}}$ element of the N – dimensional Vector \mathbf{S}_{i}

- To find an orthonormal basis functions for ^a given set of signals, the Gram-Schmidt procedure can be used.
- Gram-Schmidt procedure:
	- **6** Given a signal set $\{s_i(t)\}_{i=1}^M$, compute an orthonormal basis $\{w_j(t)\}_{j=1}^N$ 1. Define $\psi_1(t) = s_1(t)/\sqrt{E_1} = s_1(t)/\sqrt{S_1(t)}$ *i*
		- 2. For $i = 2,...,M$ compute $d_i(t) = s_i(t) \sum_{i=1}^{M}$ $\text{If } d_i(t) \neq 0 \text{ let } \psi_i(t) = d_i(t) / ||d_i(t)|$ $= S_1(t) - \sum S_2(t), \psi_1(t)$ $\mathcal{L}(t) = S_i(t) - \sum_{i=1}^{i-1} \langle S_i(t), \psi_i(t) \rangle \psi_i(t)$ 1*j* $d_i(t) = s_i(t) - \sum_{i} \langle s_i(t), \psi_j(t) \rangle \psi_j(t)$
			- If $d_i(t) = 0$ do not assign any basis function.

3. Renumber the basis functions such that basis is

{ψ1(*t*),^ψ ² (*t*),...,ψ *^N* (*t*)}

- **This is only necessary if** $d_i(t) = 0$ **for any** *i* **in step 2.**
- **Note that** $N \leq M$

-

Signal space

- What is a signal space?
	- **□** Vector representations of signals in an N-dimensional orthogonal space
- Why do we need a signal space?
	- \Box It is a means to convert signals to vectors and vice versa.
	- \Box It is a means to calculate signals energy and Euclidean distances between signals.
- Why are we interested in Euclidean distances between signals? **□** For detection purposes: The received signal is transformed to ^a received vectors. The signal which has the minimum distance to the received signal is estimated as the transmitted signal.

Signal space

□ To form a signal space, first we need to know the inner product between two signals (functions):

Inner (scalar) product:

$$
\langle x(t), y(t) \rangle = \int_{-\infty}^{\infty} x(t) y^*(t) dt
$$

= cross-correlation between x(t) and y(t)

Properties of inner product: < *ax*(*t*), *y*(*t*) >= *^a* < *^x*(*t*), *y*(*t*) > $\langle x(t), ay(t) \rangle = a^* \langle x(t), y(t) \rangle$ < *^x*(*t*) ⁺ *y*(*t*),*z*(*t*) >=< *^x*(*t*),*z*(*t*) > ⁺ < *y*(*t*),*z*(*t*) >

Signal space …

- \Box The distance in signal space is measure by calculating the norm.
- **□** What is norm?
	- Norm of a signal:

$$
||x(t)|| = \sqrt{\langle x(t), x(t) \rangle} = \sqrt{\int_{-\infty}^{\infty} |x(t)|^2 dt} = \sqrt{E_x}
$$

= "length" of x(t)

$$
||ax(t)|| = |a||x(t)||
$$

Norm between two signals:

$$
d_{x,y} = \|x(t) - y(t)\|
$$

 \Box We refer to the norm between two signals as the Euclidean distance between two signals.

Example of distances in signal space

The Euclidean distance between signals *z(t)* and *s(t)*:

$$
d_{s_i,z} = ||s_i(t) - z(t)|| = \sqrt{(a_{i1} - z_1)^2 + (a_{i2} - z_2)^2}
$$

$$
i = 1,2,3
$$

Orthogonal signal space

■ N-dimensional orthogonal signal space is characterized by N linearly independent functions $\{\psi_j(t)\}_{j=1}^N$ called basis functions. The basis functions must satisfy the <u>orthogonality</u> condition

$$
\langle \psi_i(t), \psi_j(t) \rangle = \int_0^T \psi_i(t) \psi_j^*(t) dt = K_i \delta_{ji} \qquad \begin{array}{c} 0 \le t \le T \\ j, i = 1, ..., N \end{array}
$$

where
$$
\delta_{ij} = \begin{cases} 1 \rightarrow i = j \\ 0 \rightarrow i \neq j \end{cases}
$$

 \Box If all $K_i = 1$, the signal space is <u>orthonormal</u>.

Example of an orthonormal basis

Example: 2-dimensional orthonormal signal space

$$
\begin{aligned}\n\psi_1(t) &= \sqrt{\frac{2}{T}} \cos(2\pi t/T) & 0 \le t < T \\
\psi_2(t) &= \sqrt{\frac{2}{T}} \sin(2\pi t/T) & 0 \le t < T\n\end{aligned}\n\longrightarrow \n\begin{aligned}\n\psi_1(t) \\
\psi_2(t) &= \sqrt{\frac{2}{T}} \sin(2\pi t/T) & 0 \le t < T\n\end{aligned}\n\longrightarrow \n\begin{aligned}\n\psi_1(t) \\
\psi_1(t) \mid &= \|\psi_2(t)\| = 1 \\
\psi_1(t) \mid &= \|\psi_2(t)\| = 1 \\
\psi_1(t) \mid = 1\n\end{aligned}\n\longrightarrow \n\begin{aligned}\n\psi_1(t) \\
\psi_1(t) \mid &= 1\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\psi_2(t) &= \sqrt{\frac{2}{T}} \cos(2\pi t/T) & 0 \le t < T\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\psi_1(t) &= \|\psi_2(t)\| = 1 & \text{if } \psi_1(t) \mid 0 \\
\frac{1}{\sqrt{T}} \mid &= \|\psi_1(t)\| = 1 & \text{if } \psi_1(t) \mid 0\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\psi_2(t) &= \sqrt{\frac{2}{T}} \cos(2\pi t/T) & 0 \le t < T\n\end{aligned}
$$

Signal space …

Any arbitrary finite set of waveforms where each member of the set is of duration *T*, can be expressed as a linear combination of N orthonogal waveforms where $\mathcal{W}(t)$ \mathcal{V} . ${S_i(t)}_{i=1}^{M}$ ${\psi_j(t)}_{j=1}^N$. $N \leq M$

$$
s_i(t) = \sum_{j=1}^{N} a_{ij} \psi_j(t) \qquad i = 1,...,M
$$

 $N \le M$

where

s t t dt Ks t t KaTi j j i j j ij () () ¹ (), () ¹ 0* ⁼ < ^ψ >= ^ψ ⁰ [≤] *^t* [≤] *^T ⁱ* ⁼1,...,*^M ^j* ⁼1,...,*^N* (, ,...,) *ⁱ* ⁼ *ai*¹ *ai*² *aiN* **^s** 21*ij Nj Ei ^K ^j ^a* ==Vector representation of waveform Waveformenergy

Example of Gram-Schmidt procedure

 \Box Find the basis functions and plot the signal space for the following transmitted signals:

 \Box Using Gram-Schmidt procedure:

$$
\begin{array}{ll}\n\left(\int_{0}^{T} |s_{1}(t)|^{2} dt = A^{2} & \psi_{1}(t) \\
\psi_{1}(t) = s_{1}(t) / \sqrt{E_{1}} = s_{1}(t) / A & \frac{1}{\sqrt{T}} \n\end{array}\right|_{S_{1}} \begin{array}{l}\ns_{1}(t) = A \psi_{1}(t) \\
s_{2}(t) = -A \psi_{1}(t) \\
\hline\ns_{1} = (A) \quad s_{2} = (-A) \\
\hline\n\end{array}
$$
\n
$$
d_{2}(t) = s_{2}(t) - (-A) \psi_{1}(t) = 0
$$
\n
$$
d_{2}(t) = s_{2}(t) - (-A) \psi_{1}(t) = 0
$$
\n
$$
d_{2}(t) = 0
$$
\n

Implementation of the matched filter receiver

Bank of N matched filters

Statistics of the observation Vector

- AWGN channel model: $\mathbf{z} = \mathbf{s}_{i} + \mathbf{n}$
	- \Box Signal vectors_i = $(a_{i1}, a_{i2},..., a_{iN})$ is deterministic.
	- \Box Elements of noise vector $\mathbf{n} = (n_1, n_2, ..., n_N)$ are i.i.d Gaussian random variables with zero-mean and variance N_{0} / 2 The noise vector pdf is

$$
p_{\mathbf{n}}(\mathbf{n}) = \frac{1}{(\pi N_0)^{N/2}} \exp\left(-\frac{\|\mathbf{n}\|^2}{N_0}\right)
$$

The elements of observed vector $\mathbf{z} = (z_1, z_2, ..., z_N)$ are independent Gaussian random variables. Its pdf is

$$
p_{z}(\mathbf{z} | \mathbf{s}_{i}) = \frac{1}{(\pi N_{0})^{N/2}} \exp\left(-\frac{\left\|\mathbf{z} - \mathbf{s}_{i}\right\|^{2}}{N_{0}}\right)
$$

Detection

Optimum decision rule (maximum a posteriori probability):

> where $k = 1,..., M$. $Pr(m_i \text{ sent } \mathbf{z}) \geq Pr(m_k \text{ sent } \mathbf{z})$, for all $k \neq i$ Set $\hat{m} = m_i$ if

Applying Bayes' rule gives:

 $k = i$ *p* $p_k \frac{p_{\mathbf{z}}(\mathbf{z} \cdot \mathbf{m}_k)}{n}$ Set $\hat{m} = m_i$ if = $\frac{(\mathbf{Z} \mid m_k)}{p_{\mathbf{z}}(\mathbf{Z})}$, is maximum for all **z zz**

Detection …

□ Partition the signal space into *M* decision regions, such that $\ Z_{1},...,Z_{M}$

 $m=m_{\tilde{i}}$ $\left(k\frac{P_{\mathbf{z}}(2+1)P_{k}}{r}\right]$, is maximum for all $k = i$ Vector **z** lies inside region Z_i if *p* $p_k \frac{p_{\mathbf{z}}(\mathbf{Z} \mid m)}{p_{\mathbf{z}}(\mathbf{Z} \mid m)}$ = ˆThat means $\ln[p_k \frac{p_{\mathbf{z}}(\mathbf{z} \mid m_k)}{p_{\mathbf{z}}(\mathbf{z})}]$, is maximum for all $k = i$. **z zz**

Detection (ML rule)

 \Box For equal probable symbols, the optimum decision rule (maximum posteriori probability) is simplified to:

Set $\hat{m} = m_i$ if

 $p_{\mathbf{z}}(\mathbf{z} \mid m_{k}),$ is maximum for all $k = i$

or equivalently:

Set $\hat{m} = m_i$ if

 $\ln[p_{z}(\mathbf{z} \mid m_{k})]$, is maximum for all $k = i$

which is known as *maximum likelihood*.

Detection (ML)…

□ Partition the signal space into *M* decision regions,

$$
Z_1,...,Z_M
$$

.

Q Restate the maximum likelihood decision rule as follows:

 $m=m_{\tilde{i}}$ $\ln[p_{z}(\mathbf{z} \mid m_{k})]$, is maximum for all $k = i$ Vector **z** lies inside region Z_i if ˆThat means

Detection rule (ML)…

 \Box It can be simplified to:

 $\mathbf{z} - \mathbf{s}_k$, is minimum for all $k = i$ Vector **z** lies inside region Z_i if

or equivalently:

where E_k is the energy of $s_k(t)$. $\sum_{i} z_{i} a_{kj} - \frac{1}{2} E_{k}$, is maximum for all Vector **r** lies inside region Z_i if $z_i a_{ki} - E_k$, is maximum for all $k = i$ *N j* $\sum z_j a_{kj} - \frac{1}{2} E_k$, is maximum for all $k =$ =

Schematic example of the ML decision regions

Average probability of symbol error

- **E** Erroneous decision: For the transmitted symbol m_i or equivalently signal vector S_i , an error in decision occurs if the observation vector **Z** does not fall inside region Z_i fall inside region Z . *i*
	- **Probability of erroneous decision for a transmitted symbol**

or equivalently

$$
P_e(m_i) = \Pr(\hat{m} \neq m_i \text{ and } m_i \text{ sent})
$$

 $Pr(\hat{m} \neq m_i) = Pr(m_i \text{ sent}) Pr(z \text{ does not lie inside } Z_i | m_i \text{ sent})$

 \Box Probability of correct decision for a transmitted symbol

 $Pr(\hat{m} = m_i) = Pr(m_i \text{ sent}) Pr(z \text{ lies inside } Z_i | m_i \text{ sent})$

$$
P_c(m_i) = \Pr(\mathbf{z} \text{ lies inside } Z_i | m_i \text{ sent}) = \int_{Z_i} p_{\mathbf{z}}(\mathbf{z} | m_i) d\mathbf{z}
$$

\n
$$
P_e(m_i) = 1 - P_c(m_i)
$$

\n
$$
= \frac{1}{45}
$$

\n
$$
= 45
$$

\n
$$
=
$$

Av. prob. of symbol error …

Average probability of symbol error :

$$
P_E(M) = \sum_{i=1}^{M} \Pr(\hat{m} \neq m_i)
$$

The Form equally probable symbols:

$$
P_{E}(M) = \frac{1}{M} \sum_{i=1}^{M} P_{e}(m_{i}) = 1 - \frac{1}{M} \sum_{i=1}^{M} P_{c}(m_{i})
$$

$$
= 1 - \frac{1}{M} \sum_{i=1}^{M} \int_{Z_{i}} p_{z}(\mathbf{z} | m_{i}) d\mathbf{z}
$$

Union bound

Union bound

The probability of a finite union of events is upper bounded by the sum of the probabilities of the individual events.

 \Box Let A_{μ} denote that the observation vector **Z** is closer to the symbol vector \mathbf{S}_k^{\cdot} than \mathbf{S}_i , when \mathbf{S}_i is transmitted. $P_{i}(A_{ki}) = P_{i}(s_{k}, s_{i})$ depends only on S_{i} and S_{ik} $A_{\!\scriptscriptstyle k\:\!\scriptscriptstyle i}$ ${\bf S}_i$

Applying Union bounds yields

$$
P_e(m_i) \leq \sum_{\substack{k=1 \ k \neq i}}^M P_2(\mathbf{s}_k, \mathbf{s}_i)
$$

$$
P_E(M) \leq \frac{1}{M} \sum_{i=1}^M \sum_{\substack{k=1 \ k \neq i}}^M P_2(\mathbf{s}_k, \mathbf{s}_i)
$$

Upper bound based on minimum distance

Eb/No figure of merit in digital communications

- \Box SNR or S/N is the average signal power to the average noise power. SNR should be modified in terms of bit-energy in DCS, because:
	- **□** Signals are transmitted within a symbol duration and hence, are energy signal (zero power).
	- A merit at bit-level facilitates comparison of different DCSs transmitting different number of bits per symbol.

$$
\frac{E_b}{N_0} = \frac{ST_b}{N/W} = \frac{S}{N} \frac{W}{R_b}
$$

$$
R_b : \text{Bit rate}
$$
\n
$$
W : \text{Bandwidth}
$$

Questions?

