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Demodulation and Detection
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O Major sources of errors:
Q Thermal noise (AWGN)
a disturbs the signal in an additive fashion (Additive)
0 has flat spectral density for all frequencies of interest (White)
0 is modeled by Gaussian random process (Gaussian Noise)
O Inter-Symbol Interference (ISI)

a Due to the filtering effect of transmitter, channel and receiver, symbols
are “‘smeared”.
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Example: Impact of the channel
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Example: Channel impact ...

received signal distorted by non-ideal channel only
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Receiver tasks

0 Demodulation and sampling:

0 Waveform recovery and preparing the received
signal for detection:

QImproving the signal power to the noise power
(SNR) using matched filter

OReducing ISI using equalizer
ASampling the recovered waveform
Q Detection:

QO Estimate the transmitted symbol based on the
received sample
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Recelver structure

Step 1 — waveform to sample transformation Step 2 — decision making

Demodulate & Sample

Frequency Receiving Equalizing
down-conversion filter | filter

A - g

“For bandpass signals Compensation for
channel induced ISI

[ Received waveform} [ Baseband pulse ]
)

(possibly distored

(test statistic)

[Baseband pulse] [ Sample ]
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Baseband and Bandpass

O Bandpass model of detection process 1s equivalent to
baseband model because:

QA The received bandpass waveform 1s first
transformed to a baseband waveform.

a Equivalence theorem:

QPerforming bandpass linear signal processing
followed by heterodyning the signal to the
baseband, yields the same results as
heterodyning the bandpass signal to the
baseband , followed by a baseband linear signal
processing. g Mohamed K




Steps in designing the receiver

O Find optimum solution for receiver design with the
following goals:

I. Maximize SNR
2. Minimize ISI
Q Steps in design:
O Model the received signal
0 Find separate solutions for each of the goals.

O First, we focus on designing a receiver which maximizes the
SNR.
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Design the receiver filter to maximize the SNR

0 Model the received signal

5,00 —| I (8) QF 20 r(t) = 5,(t) %h () + n(?)

n(r)
AWGN

a Simplify the model:
A Received signal in AWGN

Ideal channels r(t)

(1) = 8(0) ) r(1)=s;(1) + n(t)

n(r)
AWGN
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Matched filter receiver

O Problem:

Q Design the receiver filter/y (¢ )such that the SNR is maximized at the
sampling time when S, (¢),i=1,...,M istransmitted.

O Solution:

O The optimum filter, is the Matched filter, given by
h(t)=h,, (t)=s, (T —1t)
H(f)=H,, (f)=S, (f)exp(—j27T)

which is the time-reversed and delayed version of the conjugate of the
transmitted signal

s; (1) h(t) =\h,, (1)
0 T t 0 T t
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Example of matched filter

Sl. (Z_)A hopt (l_) A
_A _A
JT JT
T ¢ T
Sl. (Z_)A hopt (l_) A
_A _A
JT JT
172N 1 2 T
=4 =A
JT JT

12

y()
A* 4

=s,(t)%h,, (1)
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Correlator receiver

Q The matched filter output at the sampling time, can be

realized as the correlator output.

2(T)=h,, (T)*r(T)

— j r(7)s; (T)dT =< r(t),s(t) >

13
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Implementation of matched filter receiver

Bank of M matched filters

__________________________________________________

: 1 Matched filter output:
r(t) _ . i Z  Observation
; : z vector

z.=r@®)*s(T-1) i=1...M
2=(2,(T),2,(T)yes 20y (T)) = (21, Zy5eers Zyy )
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Implementation of correlator receiver

Bank of M correlators

________________________________________________

S*1(l‘)
T|z,(T)_ _
: _[() Z1 . Correlators output:
r(z) : . | _ ' Z Observation
' s“u (1) ' | T2 vector
T
J, b
0 Ky (T)

Z=(2,(T),2,(T)yeees 20, (T)) = (2, 2y 2y )

2, = [ r()s, (t)dt i=1,..,M

0
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Implementation example of matched filter receivers

Sl(j) Bank of 2 matched filters
N
0 T t _A 4@2_ _
: VT <
r(t) Z
0 T =7 —
s, (1)
0 T ¢ (1)
—A —A
JT JT
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GRAM — SCHMIDT ORTHOGONALIZATION PROCEDURE .

In case of Gram-Schmidt Orthogonalization procedure, any set
of ‘m’ energy signals {S.(t)} can be represented by a linear
combination of ‘N’ orthonormal basis functions where
N<m. That is we may represent the given set of real valued
energy signals S,(t), S,(t). ... ... S, (t) each of duration T
seconds 1n the form
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S ()=S0, +S,0, (). ....... +8,.0, (1)
S, (1) =S, +S,,0,(1). ... .. +S, .0, (1)

S (=S _dO+S .A,0)........ +S B, @)

0LtLT

5, (1) ZZ::I 359, (1) {i:l,z 3......m

T i=123.....m
S;(1)=]8.(g;(1) 1
O _




The co-efficient S; may be viewed as the "
element of the N — dimensional Vector S,

Sil

5 i = i=123......m

Mohamed Khedr




Let S, =3¢,(1)+ 46, (1)
S, == ¢, (1)+ 24, (1)

Vector =m > {_ﬂ

&, () 51

4 ()

20
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To find an orthonormal basis functions for a given
set of signals, the Gram-Schmidt procedure can be
used.

Gram-Schmidt procedure:
Given a signal set {s;(t)}"., compute an orthonormal basis {W,-(t)}]jv:l
1. Define ¥, () =s5,()/\JE, =s,0)/|s,0)] .,
2. For i=2,..M compute d,(t)=s,t)—> <s,0),¥,;®)>y, (1)
If d.(t)#0let v, ()=d®)/|d,0)| 7
If d.(r)=0do not assign any basis function.
3. Renumber the basis functions such that basis is

VAGR7AGIRMG);

B Thisis only necessary ifd,(r) =0for any i in step 2.
® Notethat N<M
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Signal space

O What 1s a signal space?

QO Vector representations of signals in an N-dimensional
orthogonal space

O Why do we need a signal space?
Q It 1s a means to convert signals to vectors and vice versa.

Q It 1s a means to calculate signals energy and Euclidean
distances between signals.

O Why are we interested in Euclidean distances between signals?

Q For detection purposes: The received signal 1s transformed
to a recerved vectors. The signal which has the minimum
distance to the received signal is estimated as the
transmitted signal.
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Schematic example of a signal space

V(1)

s, =(a,,,a,)

(

Transmitted signal () =a,y, () +a,y, (1) & s, =(a,,a,)
alternatives | 52 (1) =a,y,(t) +a,y,(t) & s, =(a,,a,,)
Received sienal at s;(1) = ay W, (1) + a, ¥, (1) & s, =(ay,,a;,)
eceived signal a

matched filter output 2() =z, () + 2., (1) = 2=(z,,2,)

23
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Signal space

0O To form a signal space, first we need to know the
inner product between two signals (functions):

QInner (scalar) product:

(o o]

< x(t), y(t) >= j x(t)y" (t)dt

—0Q

= cross-correlation between x(t) and y(t)

Q Properties of inner product:
<ax(t),y(t)>=a<x(),y()>

<x(t),ay(t) >=a <x(t),y(t)>

<x(t)+ y(@),z(t) >=<x(1),z(t) >+ < y(1),z(t) >
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Signal space ...

O The distance 1n signal space 1s measure by calculating the
norm.

O What 1s norm?
a Norm of a signal:

|x(0)] = /< x(0), x(2) > = \/ | |x@fat=E,

= “length” of x(t)

Jax(®)] =a|x (0

O Norm between two signals:

d,, =|x@)—y@)|

O We refer to the norm between two signals as the Euclidean
distance between two signals.
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Example of distances in signal space

V(1)

s, =(a,,,a,)

S, =(ay,ay)
The Euclidean distance between signals z(z) and s(7):

ds,-,z =|ls;(t)— z(t)H — \/(ai1 — Z1)2 +(a,, — Z2)2
1=1,23

26 Mohamed Khedr




Orthogonal signal space

N-dimensional orthogonal signal space 1s characterized by N
linearly independent functions {;y.(t)}j_v_ called basis functions.
The basis functions must satisty the offflogonality condition

0<r<T
j,i=1..,N

T
<y, ),y (1) >= j v,y (dt =K, S,
0

where  _J1—=i=J
0> i#j

If all K; =1, the signal space is orthonormal.
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Example of an orthonormal basis

QExample: 2-dimensional orthonormal signal space
W, (1)

W, (1) = %cos(Zm‘/T) 0<t<T

W,(1) = %Sin(ZﬂT/T) 0<t<T 0 > Y, (1)

<Y ()., (6) >= [ W, (W, (Hdt =0

A0 ACI R
v,y JExample: 1-dimensional orthonormal signal space

: —1
JT Hl//1 (f)H 6

> (1)

Q T 1
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Signal space ...

. . . M
a Any arbitrary finite set of waveforms 1s, (1 )},-21

where each member of the set 1s of duration 7, can be expressed
as a linear combination of N orthonogal waveforms

where {wj (t)}];]=1 : N<M

N
si(t):zczij;yj(t) i =1,...M
j=1

N<M
where

DN T SN T

a, =—<s.(0),w.(t) >=— | s.(OW (t)dt 0 <T !
¢ (D) K. 1 (O 0) i=1..M |
________________________________ |

N 2
S; = (s iy seees Ay ) L = ZKJ d;j
Vector representation of waveform Wa\fglform energy
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Signal space ...

N
Si(t)=2al.jlﬂj(t) S; = (a1, 85505 Ay )

1
Waveform t]O vector conversion Vector to waveform conversion

30
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Example of projecting signals to an

orthonormal signal space
W, (1)

s, =(a,,,a,)

- W, (1)

Transmitted signal () =ay, () +ay, (1) < s =(a,,a,)
alternatives | $,(f) =a, ¥, (1) +a,,W,(t) & s, =(a,,,a,,)
|5, (0) =ay W, () +any, (1) & s; = (a5, 4a5,)
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Example of Gram-Schmidt procedure

O Find the basis functions and plot the signal space for the following
transmitted signals:

5, (1) 5,(0)]
A
JT 0 T 1
> i
0 T 1 T

O Using Gram-Schmidt procedure:

(DE, = | s, () dr = A° Q) 5 (1) = Ay, (1)
0 L $,(t) =—Ay (1)
l/ll(t)zsl(t)/\/il:sl(t)/A VT S, =(A) s, =(-A)
O<sop0>=[ v wi=-4 [

d, (1) = 5,(1) = (=AW, (1) =0

>0 »
SNOLZ

>l//1(t)

Q__

3 2 Mohamed Khedr




Implementation of the matched filter receiver

Bank of N matched filters

l//*l (T —1) —@4— z N Observation

1 | vector

4Gl o -z

N
Si(t)zzaijo(t) i=1,...M
j=1

2, =r(t)sy (T—t) j=Ll..N

33
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Implementation of the correlator receiver

Bank of N correlators

________________________________________________

W, (1)
J‘T Zl —
r
: 1 .

r(1) ° : . | _ i Z Observation
| v, (1) ' | T2 vector
(el
i 0 | *N

N e

s®=Y ay, @) i=lL.,M

j=1
Z=12,2psr2y) @
T

z,= j ritw,(Ddt j=1,..,N
0
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Example of matched filter receivers using
basic functions

s; (O] s, (1)1 v, ()]
_A 1
T ‘ T
0 T t
0 T r —A 0 T e
JT
1 matched filter
W, (th
r(t) % _ /4
- T Sl
0 Tt

______________________________________________________

O Number of matched filters (or correlators) is reduced by 1 compared to using
matched filters (correlators) to the transmitted signal.

Q Reduced number of filters (or correlators)
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White noise in the orthonormal signal space

QO AWGN, n(t), can be expressed as

n(t) :\ﬁ(t)}+\fi (1)

Noise projected on the signal space Noise outside on the signal space
which impacts the detection process.

N
[ A '
n(t) = Z; ny, () ' Vector representation of 71(¢) !

J= |

—

n,=<n),y;t)> j=1,.,N Z:’ n=(n,n,,..,ny)
N

! N . !

. \;J._ independent zero-mean

: J=1 : : !
Gaussain random variables with
variance var(n;)=N,/2

< n),y.)>=0 j=1..
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Statistics of the observation Vector

Q AWGN channel model: Z=S.+n
a Signal vectors; =(a;,a;,,...,a,y) 1s deterministic.

0 Elements of noise vector n=(n,,n,,...,n, ) are i.i.d Gaussian
random variables with zero-mean and variance N o/ 2 The
noise vector pdf is

pa(n) = 1 exp el
B i Ny

0 The elements of observed vector Z = (2,525 Zy) are
independent Gaussian random variables. Its pdf is

[ Jes]
p,(zls,)= — €Xp| — :
(2, ) N,

3 7 Mohamed Khedr




Detection

Q Optimum decision rule (maximum a posteriori
probability):

Set m =m, if
Pr(m, sent|z) =2 Pr(m, sent|z),forall k #1
where k =1,.... M.

Q Applying Bayes’ rule gives:

Set m =m, if

E |
Px p,(z1m,) ,is maximum for all k =i

p,(z)

3 8 Mohamed Khedr




Detection ...

Q Partition the signal space into M decision regions,
such that Z o Z

M

Vector z lies inside region Z. if

p,(zlm,)
p,(z)
That means

A

m=m.

l

In[p, ], 1s maximum for all £k =i.

39
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Detection (ML rule)

Q For equal probable symbols, the optimum decision rule
(maximum posteriori probability) 1s simplified to:

Set /it =m, if

p,(zlm,), 1s maximum for all k =1

or equivalently:

Set m =m, if

In[p,(z|m,)], 1s maximum for all k =1

which 1s known as maximum likelihood.

40
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Detection (ML)...

Q Partition the signal space into M decision regions,
Liy..n Ly,

d Restate the maximum likelihood decision rule as
follows:

Vector z lies inside region Z, if
In[p,(zlm,)], 1s maximum for all k =

That means

A

m=m.

l

4 1 Mohamed Khedr




Detection rule (ML)...

Q It can be simplified to:

Vector z lies inside region Z, if

, 1S minimum for all k =i

lz—s,

Or €q

uivalently:

Vectorr lies inside region Z, if

A 1
Z Z,;a,; —EEk , 1Is maximum for all k =i
j=1

where E, 1s the energy of s, (7).

42

Mohamed Khedr




Maximum likelihood detector block

diagram
., VAR
j < 58 > '\T/
_ % E1 Choose
z : the largest m

" <°9SM>

th "69

N | —
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Schematic example of the ML decision regions

W, (1)
1

4 4 Mohamed Khedr




Average probability of symbol error

Q Erroneous decision: For the transmitted symbol 1 or equivalently

signal vector S an error in decision occurs if the observatlon vector Z does not
fall inside region Z.

O Probability of erroneous decision for a transmitted symbol

or equivalently | F.(1m;) = Pr(m # m; and m;, sent)

Pr(m # m;) = Pr(m, sent)Pr(z does not lie inside Z, ‘ml. sent)

O Probability of correct decision for a transmitted symbol

Pr(m = m,) = Pr(m, sent)Pr(z lies inside Z, ‘ml. sent)

P (m,) = Pr(z liesinside Z, ‘m sent) = _[ p,(zlm )dz
P (m)=1-P.(m,) “
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Av. prob. of symbol error ...

Q Average probability of symbol error :

P.(M) =iPr(nAfz;t m.)

A For equally probable symbols:

P(M) =~ Pm)=1=——> P.(m)

Mohamed Khedr




Example for binary PAM

- W, (1)
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Union bound

4 )

Union bound
The probability of a finite union of events is upper bounded
by the sum of the probabilities of the individual events.

\_

O Let Aki denote that the observation vector Z is closer to the symbol

S

vector S than S., when i 1S transmitted.
a Pr(A,,) =P, (s,,s;) depends only on Si and S'k

J

O Applying Union bounds yields

Pe(ml.)SiPz(sk,si) - P.(M) SﬁiiP(s,ﬂsi)

i=1 k=1
k+i k#i
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Example of union bound

P(m)= | p,(xlm)dr )

2,0Z2;U7Z,

Union bound: |

4
P(m) <Y P(s,.s,)
N r. |

A

t’%

< @ [
e 2%

\ v, - ° V) r‘ v,
@ . @ ;. @ @
S, % S, 2 S,
> -ED;- > -

v, N v, 7 7
Sy S : NS4 '//
N ° ﬁ T TI%l'\l\ 7 ¥ %
P(ss9) = [ clm)dr  Psy5)= [ p,(x1m)dr P55 = [ p,(rlm)dr
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Upper bound based on minimum distance

P,(s,,s;) =Pr(z1s closer tos, thans,, whens; 1s sent)

T | exp(——)du—Q{ dik/Z]

JN, /2

2
P(M)<—ZZP(sk,S) (M — 1)Q[ N/ j

i=l k=1 /2
__________________________ S
. . . . d_=mind,
Minimum distance in the signal space: ™ ;i K|
izk

50
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Eb/No figure of merit in digital
communications

O SNR or S/N i1s the average signal power to the average noise
power. SNR should be modified in terms of bit-energy in
DCS, because:

a Signals are transmitted within a symbol duration and
hence, are energy signal (zero power).

] A merit at bit-level facilitates comparison of different
DCSs transmitting different number of bits per symbol.

E, ST, S W . R, : Bitrate
N, N/W NR, W : Bandwidth
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Example of Symbol error prob. For PAM
signals

Symbol error perfromance of M-ary PAM

e

Symbol error probability: P_(M)
o

JE,
Sl
O] Q@ @ P>
ﬂ 6 ﬂ v, (1)
] 5 5
i L >
10 15 20 1) T t

E, /N, [dB]
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Questions?

53
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