EC 721 Advanced Digital Communications Spring 2008

Mohamed Essam Khedr

Department of Electronics and Communications
Error correcting codes

http://webmail.aast.edu/~khedr

Syllabus

Tentatively

Week 1	Overview, Probabilities, Random variables
Week 2	Random Process, Optimum Detection
Week 3	Digital Signal Representation
Week 4	Signal space and probability of error
Week 5	Probability of error of M-ary techniques
Week 6	Linear block codes
Week 7	
Week 8	
Week 9	
Week 10	
Week 11	
Week 12	
Week 13	
Week 14	
Week 15	

Block diagram of a DCS

What is channel coding?

Channel coding:

- Transforming signals to improve communications performance by increasing the robustness against channel impairments (noise, interference, fading, ..)
- Waveform coding: Transforming waveforms to <u>better</u> waveforms
- Structured sequences: Transforming data sequences into <u>better</u> sequences, having structured redundancy.
 - Better" in the sense of making the decision process less subject to errors.

What is channel coding?

- Coding is mapping of binary source (usually) output sequences of length k into binary channel input sequences n (>k)
- A block code is denoted by (n,k)
- Binary coding produces 2^k codewords of length n. Extra bits in codewords are used for error detection/correction
- In this course we concentrate on two coding types: (1) block, and (2) convolutional codes realized by binary numbers:
 - Block codes: mapping of information source into channel inputs done independently: Encoder output depends only on the current *block* of input sequence
 - Convolutional codes: each source bit influences n(L+1) channel input bits. n(L+1) is the constraint length and L is the memory depth. These codes are denoted by (n,k,L).

Error control techniques

- Automatic Repeat reQuest (ARQ)
 - Full-duplex connection, error detection codes
 - The receiver sends a feedback to the transmitter, saying that if any error is detected in the received packet or not (Not-Acknowledgement (NACK) and Acknowledgement (ACK), respectively).
 - The transmitter retransmits the previously sent packet if it receives NACK.
- Forward Error Correction (FEC)
 - Simplex connection, error correction codes
 - The receiver tries to correct some errors
- Hybrid ARQ (ARQ+FEC)
 - Full-duplex, error detection and correction codes

Why using error correction coding?

- Error performance vs. bandwidth
- Power vs. bandwidth
- Data rate vs. bandwidth
- Capacity vs. bandwidth

Coding gain:

For a given bit-error probability, the reduction in the Eb/N0 that can be realized through the use of code:

$$G[dB] = \left(\frac{E_b}{N_0}\right)_{u}[dB] - \left(\frac{E_b}{N_0}\right)_{c}[dB]$$

Channel models

- Discrete memory-less channels
 - Discrete input, discrete output
- Binary Symmetric channels
 - Binary input, binary output
- Gaussian channels
 - Discrete input, continuous output

Linear block codes

Let us review some basic definitions first which are useful in understanding Linear block codes.

Some definitions

- Binary field:
 - The set {0,1}, under modulo 2 binary addition and multiplication forms a field.

Addition	Multiplication
$0 \oplus 0 = 0$	$0 \cdot 0 = 0$
$0 \oplus 1 = 1$	$0 \cdot 1 = 0$
$1 \oplus 0 = 1$	$1 \cdot 0 = 0$
$1 \oplus 1 = 0$	$1 \cdot 1 = 1$

Binary field is also called Galois field, GF(2).

Some definitions...

- Examples of vector spaces
 - The set of binary n-tuples, denoted by V_n

```
V_4 = \{(0000), (0001), (0010), (0011), (0100), (0101), (0111), (1000), (1001), (1010), (1011), (1100), (1101), (1111)\}
```

- Vector subspace:
 - A subset S of the vector space V_n is called a subspace if:
 - The all-zero vector is in S.
 - The sum of any two vectors in S is also in S.
 - Example: $\{(0000), (0101), (1010), (1111)\}$ is a subspace of V_4 .

Some definitions...

Spanning set:

- A collection of vectors $G = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$, the linear combinations of which include all vectors in a vector space V, is said to be a <u>spanning set</u> for V or to <u>span</u> V.
 - Example: $\{(1000), (0110), (1100), (0011), (1001)\}$ spans V_4 .

Bases:

- A spanning set for V that has minimal cardinality is called a basis for V.
 - Cardinality of a set is the number of objects in the set.
 - Example: $\{(1000), (0100), (0010), (0001)\}$ is a basis for V_4 .

Linear block codes

- Linear block code (n,k)
 - A set $C \subset V_n$ with cardinality 2^k is called a linear block code if, and only if, it is a subspace of the vector space V_n .

$$V_k \to C \subset V_n$$

- Members of C are called code-words.
- The all-zero codeword is a codeword.
- Any linear combination of code-words is a codeword.

of bits for FEC

- Want to correct t errors in an (n,k) code
 - Data word $\mathbf{d} = [d_1, d_2, \dots, d_k] = > 2^k \text{data}$ words
 - Code word $\mathbf{c} = [c_1, c_2, \dots, c_n] = > 2^n \text{ code}$ words

Representing codes by vectors

- Code strength is measured by Hamming distance that tells how different code words are:
 - Codes are more powerful when their minimum Hamming distance d_{min} (over all codes in the code family) is large
- Hamming distance d(X,Y) is the number of bits that are different between code words
- (n,k) codes can be mapped into *n*-dimensional grid:

3-bit repetition code

3-bit parity code

Error Detection

- If a code can detect a t bit error, then c_j' must be within a Hamming sphere of t
- For example, if c_j =101, and t=1, then `100','111', and `001' lie in the Hamming sphere.

Code word

Error Correction

To correct an error, the Hamming spheres around a code word must be nonoverlapping, $d_{min} = 2 t + 1$

▲ 4. Visualization of eight code words in a 6-tuple space.

(a) Hamming distance $d(\mathbf{c}_{i}, \mathbf{c}_{j}) \ge 2t + 1$. (b) Hamming distance $d(\mathbf{c}_{i}, \mathbf{c}_{j}) < 2t$. The received vector is denoted by \mathbf{r} .

Block Code Error Detection and Correction

- (6,3) code $2^3 => 2^6$, $d_{min} = 3$
- Can detect 2 bit errors, correct 1 bit
 - 110100 sent; 110101 received
- Erasure: Suppose code word 110011 sent but two digits were erased (xx0011), correct code word has smallest Hamming distance

Messag e	Code- word	1	2
000	000000	4	2
100	110100	1	3
010	011010	3	2
110	101110	3	3
001	101001	3	2
101	011101	2	3
011	110011	2	0
111	000111	3	1

Geometric View

- Want code
 efficiency, so the
 space should be
 packed with as
 many code words
 as possible
- Code words should be as far apart as possible to minimize errors

 2^k *n*-tuples, subspace of codewords

- The information bit stream is chopped into blocks of k bits.
- Each block is encoded to a larger block of n bits.
- The coded bits are modulated and sent over channel.
- The reverse procedure is done at the receiver.

- The Hamming weight of vector **U**, denoted by w(**U**), is the number of non-zero elements in **U**.
- The Hamming distance between two vectors U and V, is the number of elements in which they differ.

 $d(\mathbf{U}, \mathbf{V}) = w(\mathbf{U} \oplus \mathbf{V})$

The minimum distance of a block code is

$$d_{\min} = \min_{i \neq j} d(\mathbf{U}_i, \mathbf{U}_j) = \min_{i} w(\mathbf{U}_i)$$

Error detection capability is given by

$$e = d_{\min} - 1$$

Error correcting-capability t of a code, which is defined as the maximum number of guaranteed correctable errors per codeword, is

$$t = \left| \frac{d_{\min} - 1}{2} \right|$$

- For memory less channels, the probability that the decoder commits an erroneous decoding is $P_M \leq \sum_{i=1}^{n} \binom{n}{i} p^j (1-p)^{n-j}$
 - p is the transition probability or bit error probability over channel.
- The decoded bit error probability is

$$P_{B} \approx \frac{1}{n} \sum_{j=t+1}^{n} j \binom{n}{j} p^{j} (1-p)^{n-j}$$

Discrete, memoryless, symmetric channel model

Note that for coded systems, the coded bits are modulated and transmitted over channel. For example, for M-PSK modulation on AWGN channels (M>2):

$$p \approx \frac{2}{\log_2 M} Q \left(\sqrt{\frac{2(\log_2 M)E_c}{N_0}} \sin\left(\frac{\pi}{M}\right) \right) = \frac{2}{\log_2 M} Q \left(\sqrt{\frac{2(\log_2 M)E_bR_c}{N_0}} \sin\left(\frac{\pi}{M}\right) \right)$$

where E_c is energy per coded bit, given by $E_c = R_c E_b$

■ A matrix G is constructed by taking as its rows the vectors on the basis, $\{V_1, V_2, ..., V_k\}$.

$$\mathbf{G} = \begin{bmatrix} \mathbf{V}_1 \\ \vdots \\ \mathbf{V}_k \end{bmatrix} = \begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & & \ddots & \vdots \\ v_{k1} & v_{k2} & \cdots & v_{kn} \end{bmatrix}$$

Encoding in (n,k) block code

The rows of G, are linearly independent.

Example: Block code (6,3)

$$\mathbf{G} = \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \\ \mathbf{V}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Message vector	Codeword
000	000000
100	110100
010	011010
110	101110
001	101001
101	011101
011	110011
111	000111

- Systematic block code (n,k)
 - For a systematic code, the first (or last) k
 elements in the codeword are information bits.

$$\mathbf{G} = [\mathbf{P} \mid \mathbf{I}_k]$$

$$\mathbf{I}_k = k \times k \text{ identity matrix}$$

$$\mathbf{P}_k = k \times (n-k) \text{ matrix}$$

$$\mathbf{U} = (u_1, u_2, ..., u_n) = (\underbrace{p_1, p_2, ..., p_{n-k}}_{\text{parity bits}}, \underbrace{m_1, m_2, ..., m_k}_{\text{message bits}})$$

For any linear code we can find an matrix $\mathbf{H}_{(n-k)\times n}$, which its rows are orthogonal to rows of \mathbf{G} :

$$\mathbf{G}\mathbf{H}^T = \mathbf{0}$$

- H is called the parity check matrix and its rows are linearly independent.
- For systematic linear block codes:

$$\mathbf{H} = [\mathbf{I}_{n-k} \mid \mathbf{P}^T]$$

$$r = U + e$$

 $\mathbf{r} = (r_1, r_2,, r_n)$ received codeword or vector

 $\mathbf{e} = (e_1, e_2, \dots, e_n)$ error pattern or vector

- Syndrome testing:
 - S is syndrome of \mathbf{r} , corresponding to the error pattern \mathbf{e} . $\mathbf{S} = \mathbf{r}\mathbf{H}^T = \mathbf{e}\mathbf{H}^T$

Standard array

- 1. For row $i = 2,3,...,2^{n-k}$ find a vector in V_n of minimum weight which is not already listed in the array.
- 2. Call this pattern e_i and form the i: the row as the corresponding coset

- Standard array and syndrome table decoding
 - 1. Calculate $S = rH^T$
 - 2. Find the coset leader, $\hat{\mathbf{e}} = \mathbf{e}_i$, corresponding to S.
 - 3. Calculate $\hat{\mathbf{U}} = \mathbf{r} + \hat{\mathbf{e}}$ and corresponding $\hat{\mathbf{m}}$.
 - Note that $\hat{\mathbf{U}} = \mathbf{r} + \hat{\mathbf{e}} = (\mathbf{U} + \mathbf{e}) + \hat{\mathbf{e}} = \mathbf{U} + (\mathbf{e} + \hat{\mathbf{e}})$
 - If $\hat{\mathbf{e}} = \mathbf{e}$, error is corrected.
 - If $\hat{\mathbf{e}} \neq \mathbf{e}$, undetectable decoding error occurs.

Example: Standard array for the (6,3) code

codewords								
000000	110100	011010	101110	101001	011101	110011	000111	
000001	110101	011011	101111	101000	011100	110010	000110	
000010	110110	011000	101100	101011	011111	110001	000101	
000100	110000	011100	101010	101101	011010	110111	000110	
001000	111100	•			:		1	
010000	100100						co	oset
100000	010100				:			
010001	100101		•••			•••	010110	
	Cose	t leaders						

Error pattern	Syndrom
000000	000
000001	101
000010	011
000100	110
001000	001
010000	010
100000	100
010001	111

$$U = (101110)$$
 transmitted.

$$\mathbf{r} = (001110)$$
 is received.

 \rightarrow The syndrome of **r** is computed:

$$S = rH^T = (001110)H^T = (100)$$

- Error pattern corresponding to this syndrome is $\hat{\mathbf{e}} = (100000)$
- → The corrected vector is estimated

$$\hat{\mathbf{U}} = \mathbf{r} + \hat{\mathbf{e}} = (001110) + (100000) = (101110)$$

Hamming codes

Hamming codes

- Hamming codes are a subclass of linear block codes and belong to the category of *perfect codes*.
- Hamming codes are expressed as a function of a single integer $m \ge 2$.

```
Code length: n = 2^m - 1

Number of information bits: k = 2^m - m - 1

Number of parity bits: n - k = m

Error correction capability: t = 1
```

The columns of the parity-check matrix, H, consist of all non-zero binary m-tuples.

Hamming codes

Example: Systematic Hamming code (7,4)

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix} = [\mathbf{I}_{3\times3} \mid \mathbf{P}^T]$$

$$\mathbf{G} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} = [\mathbf{P} \ | \ \mathbf{I}_{4\times4}]$$

Example of the block codes

