EC 7xx Advanced Digital Communications Spring 2008

Mohamed Essam Khedr Department of Electronics and Communications Overview, Probabilities, Random variables, Random process **http://webmail.aast.edu/~khedr**

Grades

Presentation and Report

Q Roadmap

Random Variable as ^a Measurement

 \Box Thus a random variable can be thought of as a measurement (yielding ^a real number) on an experiment

Maps "*events*" to "*real numbers*"

□ We can then talk about the pdf, define the mean/variance and other moments

Continuous Probability Density Function

- \Box 1. Mathematical Formula
- 2. Shows All Values, *^x*, & Frequencies, f(*x*) f(*X*) Is *Not* Probability
- \Box 3. **Properties**

(Area Under Curve) All *X* $f(x) \geq 0$, $a \leq x \leq b$

Cumulative Distribution Function

The cumulative distribution function (CDF) for a random variable *X* is

$$
F_X(x) = P(X \le x) = P(\lbrace s \in S \mid X(s) \le x \rbrace)
$$

\nTo Note that $F_X(x)$ is non-decreasing in x, i.e.
\n
$$
x_1 \le x_2 \implies F_X(x_1) \le F_X(x_2)
$$

\nand
$$
\lim_{x \to \infty} F_X(x) = 0
$$
 and
$$
\lim_{x \to \infty} F_X(x) = 1
$$

Expectation of ^a Random Variable: E[X]

 \Box The expectation (average) of ^a (discrete-valued) random variable *X* is

Standard Deviation, Coeff. Of Variation, SIQR

U Variance: second moment around the mean:

 $\Box \sigma^2 = E[(X-\mu)^2]$

Standard deviation ⁼ σ

$$
stdv(x) = \sigma = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\mu'_2 - \mu^2},
$$

Covariance and Correlation: Measures of Dependence

Covariance: $((x_i - \mu_i)(x_i - \mu_i)) =$

 \Box For $i = j$, covariance = variance!

 \Box Independence => covariance = 0 (not vice-versa!)

□ Correlation (coefficient) is a normalized (or scaleless) form of covariance:

$$
\operatorname{cor}(x_i, x_j) \equiv \frac{\operatorname{cov}(x_i, x_j)}{\sigma_i \sigma_j},
$$

 \Box Between -1 and $+1$.

 \Box Zero \Rightarrow no correlation (uncorrelated). **□** Note: uncorrelated DOES NOT mean independent!

Random Vectors & Sum of R.V.s

Q Random Vector = $[X_1, ..., X_n]$, where $Xi = r.v$.

Q Covariance Matrix:

■ K is an nxn matrix… $\Box K_{ij} = Cov[X_i, X_j]$ $\mathbf{X}_{ii} = \mathrm{Cov}[X_i, X_i] = \mathrm{Var}[X_i]$

 Sum of *independent* R.v.s \blacksquare Z = X + Y PDF of Z is the *convolution* of PDFs of X and Y Can use transforms!

Correlation

• indicates the strength and direction of a linear relationship between two random variables

Important (Discrete) Random Variable: Bernoulli

 \Box The simplest possible measurement on an experiment: \Box **Success** ($X = 1$) or **failure** ($X = 0$).

<u></u> Usual notation:

$$
P_X(1) = P(X = 1) = p \qquad P_X(0) = P(X = 0) = 1 - p
$$

E(X)=

The Structure of the Structure Contract C

 Poisson random variables are good for *counting frequency of occurrence*: like the number of customers that arrive to ^a bank in one hour, or the number of packets that arrive to ^a router in one second.

Important Continuous Random Variable: Exponential

□ Used to represent time, e.g. until the next arrival

 Has PDF for somee $\lambda > 0$ **O** Properties: $\rm 0$ 1 $\int_{0}^{\infty} f_X(x) dx = 1$ and $E(X) = \frac{1}{\lambda}$ for $\mathrm{x}\geq 0$ $\left(x\right) = \begin{cases} \lambda e & \text{for } x \ge 0 \\ 0 & \text{for } x < 0 \end{cases}$ for $x < 0$ *x e* $f_{\overline{X}}(x)$ $\lambda e^{-\lambda x}$ for $x \ge$ =

■ Need to use integration by Parts!

Gaussian/Normal

Normal Distribution:

Completely characterized by mean (μ) and variance (σ^2)

Q-function: one-sided tail of normal pdf

$$
Q(z) \stackrel{\triangle}{=} p(x > z) = \int_z^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.
$$

<u>erfc():</u> two-sided tail. So: $Q(z) = \frac{1}{2}$ erfc

Maximum Likelihood (ML) Detection: Concepts

Likelihood Principle

Experiment:

Pick Urn A or Urn B at random

Select a ball from that Urn.

 \Box The ball is black.

 \Box What is the probability that the selected Urn is A?

Likelihood Principle (Contd)

- \Box Write out what you know!
- \Box **P(Black | UrnA) ⁼ 1/3**
- \Box **P(Black | UrnB) ⁼ 2/3**
- \Box $P($ Urn A $) = P($ Urn B $) = 1/2$
- \Box We want **P(Urn A | Black).**
- \Box Gut feeling: Urn B is more likely than Urn A (given that the ball is black). But by how much?
- \Box This is an <u>inverse probability</u> problem.
	- \Box Make sure you understand the inverse nature of the conditional probabilities!
- \Box Solution technique: Use Bayes Theorem.

Likelihood Principle (Contd)

- \Box **Bayes manipulations:**
- \Box **P(Urn A | Black) ⁼**
	- **P(Urn A and Black) /P(Black)**
- \Box Decompose the numerator and denomenator in terms of the probabilities we know.
- \Box P (Urn A and Black) = P (Black | UrnA)* P (Urn A)
- \Box **P(Black) ⁼ P(Black| Urn A)*P(Urn A) ⁺ P(Black| UrnB)*P(UrnB)**
- \Box We know all these values Plug in and crank.
- \Box **P(Urn A and Black) ⁼ 1/3 * 1/2**
- **P(Black) ⁼ 1/3 * 1/2 ⁺ 2/3 * 1/2 ⁼ 1/2**
- \Box **P(Urn A and Black) /P(Black) ⁼ 1/3 ⁼ 0.333**
- \Box Notice that it matches our gu^t feeling that Urn A is less likely, once we have seen black.
- \Box *The information that the ball is black has CHANGED !*
	- From P(Urn A) = 0.5 to P(Urn A | Black) = 0.333

Likelihood Principle

- \Box Way of thinking…
- \Box Hypotheses: Urn A or Urn B ?
- **Q** Observation: "Black"
- \Box Prior probabilities: P(Urn A) and P(Urn B)
- \Box Likelihood of Black given choice of Urn: {aka *forward probability*}
- \Box P(Black | Urn A) and P(Black | Urn B) **<u>Desterior Probability:</u>** of each hypothesis given evidence
	- P(Urn A | Black) {aka *inverse probability*}
- **Likelihood Principle (informal):** All inferences depend **ONLY** on
	- **□** The likelihoods P(Black | Urn A) and P(Black | Urn B), and
	- \Box The priors P(Urn A) and P(Urn B)
- \Box Result is ^a probability (or distribution) model over the space of possible hypotheses.

Maximum Likelihood (intuition)

- Recall:
- \Box P (Urn A | Black) = P (Urn A and Black) $/P$ (Black) = **P(Black | UrnA)*P(Urn A) / P(Black)**
- \Box **P(Urn? | Black)** is maximized when **P(Black | Urn?)** is maximized. \Box Maximization over the hypotheses space (Urn A or Urn B)
- \Box $P(Black | Urn?) = "likelihood"$
- => "*Maximum Likelihood*" approach to maximizing posterior probability

Maximum Likelihood (ML): mechanics

- \Box **Independent Observations** (like Black): $X_1, ..., X_n$
- **Hypothesis** θ
- **Δ** Likelihood Function: $L(\theta) = P(X_1, ..., X_n | \theta) = \Pi_i P(X_i | \theta)$ \Box {Independence => multiply individual likelihoods}
- \Box **Log Likelihood LL**(θ) = Σ_i log P(X_i | θ)
- \Box **Maximum likelihood:** by taking derivative and setting to zero and solving for θ

 $\hat{\theta}_{ML}(x) = \arg \max_{a} P(x|\theta)$

- \Box **Maximum A Posteriori (MAP):** if non-uniform prior probabilities/distributions
	- **Q** Optimization function

Not Just Urns and Balls: *Detection of signal in AWGN*

- \Box Detection problem:
	- **□** Given the observation vector **z**, perform a mapping from **z** to an estimate \hat{m} of the transmitted symbol, m_i , such that the average probability of error in the decision is minimized. ˆ m of the transmitted symbol, m_{i}

 $p_{\mathbf{z}}(\mathbf{z} | m_1)$ $p_{\mathbf{z}}(\mathbf{z} | m_2)$ bell-shaped pdfs around s1 and s2 Signal s1 or s2 is sent. **^z** is received Additive white gaussian noise (AWGN) => the likelihoods are

MLE => at any point on the x-axis, see which curve (blue or red) has a <u>higher (maximum) value</u> and select the corresponding signal (s1 or s2) : simplifies into ^a "*nearest-neighbor*" rule

AWGN Nearest Neighbor Detection

- \Box Projection onto the signal directions (subspace) is called *matched filtering* to ge^t the "*sufficient statistic*"
- \Box Error probability is the tail of the normal distribution (Q-function), based upon the mid-point between the two signals

$$
Q\left(\frac{\|\mathbf{u}_A-\mathbf{u}_B\|}{2\sqrt{N_0/2}}\right),\,
$$

Questions?

