EC 7xx Advanced Digital Communications Spring 2008

Mohamed Essam Khedr Department of Electronics and Communications **Overview, Probabilities, Random** variables, Random process http://webmail.aast.edu/~khedr

	Week 1	Overview, Probabilities, Random variables, Random process	
Syllabus	Week 2		
	Week 3		
	Week 4		
Tentatively	Week 5		
	Week 6		
	Week 7		
	Week 8		
	Week 9		
	Week 10		
	Week 11		
	Week 12		
	Week 13		
	Week 14		
	Week 15		
		2 Mohame	ed Khedr

Grades

Load	Percentage	Date
7 th Week Exam	35%	27 April 2008
Final Exam	40%	
Participation	10%	
Report	15%	10 th week and up

Presentation and Report

□ Roadmap

Week 4	Point Distribution
Week 8	Progress report 5%
Week 13	Presentation starts 10%
Week 15	Report 10%
4	Mohamed Khec

Random Variable as a Measurement

Thus a random variable can be thought of as a <u>measurement</u> (yielding a real number) on an experiment

□ Maps "events" to "real numbers"

■ We can then talk about the pdf, define the mean/variance and other moments

Continuous Probability Density Function

- □ 1. Mathematical Formula
- Shows All Values, *x*, & Frequencies, f(*x*)
 f(X) Is *Not* Probability
- **3**. Properties

 $\int f(x) dx = 1$ All X (Area Under Curve) $f(x) \ge 0, a \le x \le b$

Cumulative Distribution Function

□ The <u>cumulative distribution function</u> (CDF) for a random variable *X* is

$$F_{X}(x) = P(X \le x) = P(\{s \in S \mid X(s) \le x\})$$

• Note that $F_{X}(x)$ is non-decreasing in x , i.e.

$$x_{1} \le x_{2} \Longrightarrow F_{X}(x_{1}) \le F_{X}(x_{2})$$

• Also $\lim_{x \to \infty} F_{x}(x) = 0$ and $\lim_{x \to \infty} F_{x}(x) = 1$

Expectation of a Random Variable: E[X]

 \Box The <u>expectation</u> (average) of a (discrete-valued) random variable X is

Standard Deviation, Coeff. Of Variation, SIQR

□ <u>Variance</u>: second moment around the mean:

 $\Box \sigma^2 = E[(X-\mu)^2]$

Standard deviation = σ

$$\operatorname{stdv}(x) = \sigma = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\mu_2' - \mu^2},$$

Covariance and Correlation: Measures of Dependence

 $\Box \underline{\text{Covariance:}} \quad \langle (x_i - \mu_i)(x_j - \mu_j) \rangle = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle,$

 \Box For i = j, covariance = variance!

□ Independence => covariance = 0 (not vice-versa!)

Correlation (coefficient) is a normalized (or scaleless) form of covariance:

$$\operatorname{cor}(x_i, x_j) \equiv \frac{\operatorname{cov}(x_i, x_j)}{\sigma_i \sigma_j},$$

□ Between -1 and +1.

Zero => no correlation (uncorrelated).
Note: uncorrelated DOES NOT mean independence

□ Note: uncorrelated <u>DOES NOT</u> mean independent!

Random Vectors & Sum of R.V.s

□ Random Vector = $[X_1, ..., X_n]$, where Xi = r.v.

□ <u>Covariance Matrix:</u>

□ **K** is an nxn matrix... □ $K_{ij} = Cov[X_i, X_j]$ □ $K_{ii} = Cov[X_i, X_i] = Var[X_i]$

Sum of *independent* R.v.s
Z = X + Y
PDF of Z is the *convolution* of PDFs of X and Y p_Z(z) = p_X(x) * p_Y(y). Can use transforms!

Correlation

• indicates the strength and direction of a linear relationship between two <u>random variables</u>

13

Important (Discrete) Random Variable: Bernoulli

The simplest possible measurement on an experiment:
 Success (X = 1) or failure (X = 0).

□ Usual notation:

$$P_X(1) = P(X = 1) = p$$
 $P_X(0) = P(X = 0) = 1 - p$

 $\Box E(X) =$

Poisson random variables are good for <u>counting frequency of occurrence</u>: like the number of customers that arrive to a bank in one hour, or the number of packets that arrive to a router in one second.

Important Continuous Random Variable: Exponential

□ Used to represent time, e.g. until the next arrival

 $f_X(x) = \begin{cases} \lambda e^{-\lambda x} \\ 0 \end{cases}$

□ Has PDF

□ Properties:

for some

 $\lambda > 0$

 ∞

 $\int_{-\infty}^{\infty} f_X(x) dx = 1 \quad \text{and} \quad E(X) = \frac{1}{\lambda}$

□ Need to use integration by Parts!

for $x \ge 0$

for x < 0

Gaussian/Normal

18

Normal Distribution:

Completely characterized by mean (μ) and variance (σ^2)

Q-function: one-sided tail of normal pdf

$$Q(z) \stackrel{\triangle}{=} p(x > z) = \int_z^\infty \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.$$

□ <u>erfc():</u> two-sided tail.

So:

$$Q(z) = \frac{1}{2} \mathrm{erfc}\left(\frac{z}{\sqrt{2}}\right)$$

Maximum Likelihood (ML) Detection: Concepts

Likelihood Principle

Experiment:

□ Pick Urn A or Urn B at random

□ Select a ball from that Urn.

□ The ball is black.

□ What is the probability that the selected Urn is A?

Likelihood Principle (Contd)

- □ Write out what you know!
- $\Box P(Black | UrnA) = 1/3$
- $\Box P(Black | UrnB) = 2/3$
- **D** P(Urn A) = P(Urn B) = 1/2
- □ We want **P**(**Urn A** | **Black**).
- □ Gut feeling: Urn B is more likely than Urn A (given that the ball is black). But by how much?
- □ This is an <u>inverse probability</u> problem.
 - Make sure you understand the inverse nature of the conditional probabilities!
- □ Solution technique: Use Bayes Theorem.

Likelihood Principle (Contd)

- **Bayes manipulations:**
- $\Box \quad P(Urn A \mid Black) =$
 - **P(Urn A and Black) /P(Black)**
- Decompose the numerator and denomenator in terms of the probabilities we know.
- □ P(Urn A and Black) = P(Black | UrnA)*P(Urn A)
- $\square P(Black) = P(Black| Urn A)*P(Urn A) + P(Black| UrnB)*P(UrnB)$
- We know all these values Plug in and crank.
- **P**(Urn A and Black) = 1/3 * 1/2
- **D** P(Black) = 1/3 * 1/2 + 2/3 * 1/2 = 1/2
- **D** P(Urn A and Black) /P(Black) = 1/3 = 0.333
- □ Notice that it matches our gut feeling that Urn A is less likely, once we have seen black.
- □ <u>The information that the ball is black has CHANGED !</u>
 - □ From P(Urn A) = 0.5 to P(Urn A | Black) = 0.333

Likelihood Principle

- □ Way of thinking...
- □ <u>Hypotheses</u>: Urn A or Urn B ?
- Observation: "Black"
- □ <u>Prior probabilities</u>: P(Urn A) and P(Urn B)
- Likelihood of Black given choice of Urn: {aka *forward probability*}
 - □ P(Black | Urn A) and P(Black | Urn B)
- Posterior Probability: of each hypothesis given evidence
 - □ P(Urn A | Black) {aka *inverse probability*}
- Likelihood Principle (informal): All inferences depend <u>ONLY</u> on
 - □ The likelihoods P(Black | Urn A) and P(Black | Urn B), and
 - □ The priors P(Urn A) and P(Urn B)
- Result is a probability (or distribution) model over the space of possible hypotheses.

Maximum Likelihood (intuition)

- **Recall:**
- P(Urn A | Black) = P(Urn A and Black) /P(Black) = P(Black | UrnA)*P(Urn A) / P(Black)
- P(Urn? | Black) is maximized when P(Black | Urn?) is maximized.
 Maximization over the hypotheses space (Urn A or Urn B)
- □ **P(Black | Urn?)** = "likelihood"
- □ => "*Maximum Likelihood*" approach to maximizing posterior probability

Maximum Likelihood (ML): mechanics

- □ Independent Observations (like Black): X₁, ..., X_n
- **Ηypothesis θ**
- □ **Likelihood Function**: $L(\theta) = P(X_1, ..., X_n | \theta) = \prod_i P(X_i | \theta)$ □ {Independence => multiply individual likelihoods}
- **Log Likelihood LL**(θ) = $\Sigma_i \log P(X_i | \theta)$
- **Maximum likelihood:** by taking derivative and setting to zero and solving for θ

$$\hat{\theta}_{\mathrm{ML}}(x) = \arg \max_{\theta} \mathbf{P}(x|\theta)$$

- Maximum A Posteriori (MAP): if non-uniform prior probabilities/distributions
 - Optimization function

Not Just Urns and Balls: *Detection of signal in AWGN*

- Detection problem:
 - Given the observation vector \mathbf{Z} , perform a mapping from \mathbf{Z} to an estimate \hat{m} of the transmitted symbol, m_i , such that the average probability of error in the decision is minimized.

Signal s1 or s2 is sent. z is received Additive white gaussian noise (AWGN) => the likelihoods are $p_z(z | m_1) p_z(z | m_2)$ bell-shaped pdfs around s1 and s2

<u>MLE</u> => at any point on the x-axis, see which curve (blue or red) has a <u>higher (maximum) value</u> and select the corresponding signal (s1 or s2) : simplifies into a "<u>nearest-neighbor</u>" rule

AWGN Nearest Neighbor Detection

- Projection onto the signal directions (subspace) is called *matched filtering* to get the "sufficient statistic"
- □ Error probability is the tail of the normal distribution (Q-function), based upon the mid-point between the two signals

$$Q\left(\frac{\|\mathbf{u}_A - \mathbf{u}_B\|}{2\sqrt{N_0/2}}\right),\,$$

Questions?

