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Grades

10th week and up15%Report

10%Participation

40%Final Exam

27 April 200835%7th Week Exam

DatePercentageLoad
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Presentation and Report

� Roadmap

Progress report 5%Week 8

Presentation starts 10%Week  13

Report 10%Week 15

Point DistributionWeek 4 
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Random Variable as a Measurement
� Thus a random variable can be thought of as a 

measurement (yielding a real number) on an experiment
� Maps “events” to “real numbers” 
� We can then talk about the pdf, define the 

mean/variance and other moments 
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Continuous Probability Density Function

� 1. Mathematical Formula

� 2. Shows All Values, x, & 
Frequencies, f(x)

� f(X) Is Not Probability

� 3. Properties
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Cumulative Distribution Function

� The cumulative distribution function (CDF) for a random 
variable X is 

� Note that            is non-decreasing in x, i.e.

� Also and 
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Expectation of a Random Variable: E[X]
� The expectation (average) of a (discrete-valued) random variable X is

( ) ( )XE X xf x dx
∞

−∞

= � ( ) ( )Xx
E X xP x

∞

=−∞
= Σ



Mohamed Khedr10

� Variance: second moment around the mean: 
�σ2 = E[(X-µ)2]

� Standard deviation = σ

Standard Deviation, Coeff. Of Variation, 
SIQR



Mohamed Khedr11

Covariance and Correlation: Measures of 
Dependence

� Covariance: = 

� For i = j, covariance = variance!
� Independence => covariance = 0 (not vice-versa!)

� Correlation (coefficient) is a normalized (or scaleless) form of 
covariance:

� Between –1 and +1. 
�Zero => no correlation (uncorrelated). 
�Note: uncorrelated DOES NOT mean independent!
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Random Vectors & Sum of R.V.s
� Random Vector = [X1, …, Xn], where Xi = r.v.
� Covariance Matrix:

�K is an nxn matrix… 
�Kij = Cov[Xi,Xj]
�Kii = Cov[Xi,Xi] = Var[Xi] 

� Sum of independent R.v.s
�Z = X + Y
�PDF of Z is the convolution of PDFs of X and Y

Can use transforms!



Mohamed Khedr13

Correlation
� indicates the strength and direction of a linear relationship 

between two random variables
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Important (Discrete) Random Variable: 
Bernoulli

� The simplest possible measurement on an experiment: 
� Success (X = 1) or failure (X = 0).

� Usual notation:

� E(X)=

(1) ( 1)         (0) ( 0) 1X XP P X p P P X p= = = = = = −
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Binomial can be skewed or normal

Depends upon
p and n !
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Important Random Variable:
Poisson

� A Poisson random variable X is defined by its PMF: (limit of binomial)

Where > 0 is a constant

E(X) = 

� Poisson random variables are good for counting frequency of occurrence:
like the number of customers that arrive to a bank in one hour, or the 
number of packets that arrive to a router in one second.
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Important Continuous Random 
Variable: Exponential

� Used to represent time, e.g. until the next arrival
� Has PDF

for some    > 0
� Properties:

�Need to use integration by Parts!
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Gaussian/Normal

� Normal Distribution:
Completely characterized by 
mean (µ) and variance (σ2)

� Q-function: one-sided tail of 
normal pdf

� erfc(): two-sided tail. 
� So: 
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Maximum Likelihood (ML) Detection: 
Concepts
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Likelihood Principle

� Experiment:
�Pick Urn A or Urn B at random
�Select a ball from that Urn. 

� The ball is black. 
� What is the probability that the selected Urn is A?
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Likelihood Principle (Contd)

� Write out what you know!
� P(Black | UrnA) = 1/3
� P(Black | UrnB) = 2/3
� P(Urn A) = P(Urn B) = 1/2
� We want P(Urn A | Black).
� Gut feeling: Urn B is more likely than Urn A (given that the ball is black). 

But by how much? 
� This is an inverse probability problem.

� Make sure you understand the inverse nature of the conditional 
probabilities!

� Solution technique: Use Bayes Theorem.
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Likelihood Principle (Contd)
� Bayes manipulations: 
� P(Urn A | Black) = 

� P(Urn A and Black) /P(Black)
� Decompose the numerator and denomenator in terms of the probabilities we know.

� P(Urn A and Black) = P(Black | UrnA)*P(Urn A) 
� P(Black) = P(Black| Urn A)*P(Urn A) + P(Black| UrnB)*P(UrnB) 

� We know all these values Plug in and crank.
� P(Urn A and Black) = 1/3 * 1/2 
� P(Black) = 1/3 * 1/2 + 2/3 * 1/2  = 1/2
� P(Urn A and Black) /P(Black)  = 1/3  = 0.333
� Notice that it matches our gut feeling that Urn A is less likely, once we have seen black.

� The information that the ball is black has CHANGED !
� From P(Urn A) = 0.5 to P(Urn A | Black) = 0.333
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Likelihood Principle

� Way of thinking… 
� Hypotheses: Urn A or Urn B ? 
� Observation: “Black”
� Prior probabilities: P(Urn A) and P(Urn B)
� Likelihood of Black given choice of Urn: {aka forward probability}

� P(Black | Urn A) and P(Black | Urn B)
� Posterior Probability: of each hypothesis given evidence

� P(Urn A | Black) {aka inverse probability}
� Likelihood Principle (informal): All inferences depend ONLY on 

� The likelihoods P(Black | Urn A) and P(Black | Urn B), and 
� The priors P(Urn A) and P(Urn B)

� Result is a probability (or distribution) model over the space of possible hypotheses. 
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Maximum Likelihood (intuition)
� Recall: 
� P(Urn A | Black) = P(Urn A and Black) /P(Black) =

P(Black | UrnA)*P(Urn A) / P(Black)

� P(Urn? | Black) is maximized when P(Black | Urn?) is maximized. 
� Maximization over the hypotheses space (Urn A or Urn B)

� P(Black | Urn?) = “likelihood” 
� => “Maximum Likelihood” approach to maximizing posterior probability
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Maximum Likelihood (ML): mechanics

� Independent Observations (like Black): X1, …, Xn

� Hypothesis θθθθ
� Likelihood Function: L(θ) = P(X1, …, Xn | θ) = Πi P(Xi | θ) 

� {Independence => multiply individual likelihoods}
� Log Likelihood LL(θθθθ) = ΣΣΣΣi log P(Xi | θθθθ) 
� Maximum likelihood: by taking derivative and setting to zero 

and solving for θ

� Maximum A Posteriori (MAP): if non-uniform prior 
probabilities/distributions 
� Optimization function 

P
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Not Just Urns and Balls: 
Detection of signal in AWGN

� Detection problem:
� Given the observation vector      , perform a mapping from    

to an estimate       of the transmitted symbol,     , such that 
the average probability of error in the decision is 
minimized.

m̂ im

Modulator Decision rule m̂im zis
n

z z
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Binary PAM + AWGN Noise

)|( 1mp zz

)(1 tψ
bEbE− 0

1s2s

)|( 1mp zz
)|( 2mp zz

Signal s1 or s2 is sent. z is received
Additive white gaussian noise (AWGN) => the likelihoods are

bell-shaped pdfs around s1 and s2

MLE => at any point on the x-axis, see which curve (blue or red) 
has a higher (maximum) value and select the corresponding
signal (s1 or s2) : simplifies into a “nearest-neighbor” rule

)|( 2mp zz
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AWGN Nearest Neighbor Detection

� Projection onto the signal directions (subspace) is called matched filtering to 
get the “sufficient statistic”

� Error probability is the tail of the normal distribution (Q-function), based 
upon the mid-point between the two signals
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Questions?


