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Syllabus

O Tentatively

Week 1

Overview, Probabilities, Random variables, Random
process

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Week 13

Week 14

Week 15
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Grades

Load Percentage Date

7t Week Exam 35% 27 April 2008
Final Exam 40%

Participation 10%

Report 15% 10t week and up
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O Roadmap

Presentation and Report

Week 4

Point Distribution

Week 8

Progress report 5%

Week 13

Presentation starts 10%

Week 15

Report 10%
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Simplified View of a Digital Radio Link
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Random Variable as a Measurement

O Thus a random variable can be thought of as a
measurement (yielding a real number) on an experiment

0O Maps “events” to “real numbers”

0 We can then talk about the pdf, define the
mean/variance and other moments

X(s)

~eer T TN et Measurement Space
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Continuous Probability Density Function

O 1. Mathematical Formula
Frequency

a 2. Shows All Values, x, &
Frequencies, f(x) (Value, Frequency)

Q £(X) Is Not Probability

Q 3. Properties

Jf(x)dx =1
All. X" (Area Under Curve)

f(x)>0,a<x<b Value
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Cumulative Distribution Function

Q The cumulative distribution function (CDF) for a random

variable X 1s

F,(x)=P(X<x)=P({se S| X(s)<x})

O Note that 1s non-decreasing in x, 1.€.
x, <x,=> F.(x)<F (x,)

SRR im F (x) = O JELSE lim ' (x) =1
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Expectation of a Random Variable: E[X]

O The expectation (average) of a (discrete-valued) random variable X is

E(X) = JXfX(X)dx E(X)= ¥ xP,(x)
S [
A0
.08:
3 oof
< .04:
02}~
.oo_ ' | l — ]
5mean—’1.|0 15 20 25 30
" y

FIGURE 2.7. The mean n = E{(y) as the center of gravity of a distribution. Mohamed Khedr




Standard Deviation, Coeff. Of Variation,
SIQR
O Variance: second moment around the mean:
062 = E[(X-W)?]
0 Standard deviation = G

stdv(z) = o = /{22 — (@) = /1 — .
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Covariance and Correlation: Measures of
Dependence

Q Covariance:  {(xi — pi)(x; — p;)) = {miz;) — {xi) {z;),

O For1 =], covariance = variance!
O Independence => covariance = 0 (not vice-versa!)

O Correlation (coefficient) is a normalized (or scaleless) form of
covariance:

cor(x;, ;) = cov (@i, ;) :

H;HJ

Q Between —1 and +1.
QZero => no correlation (uncorrelated).
A Note: uncorrelated DOES NOT mean independent!
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Random Vectors & Sum of R.V.s

a Random Vector = [X,, ..., X ], where Xi =r.v.
a Covariance Matrix:

ad K 1s an nxn matrix...
a Kij = Cov[Xi,Xj]
aK,. =Cov[X,X.] = Var[X,]

Q Sum of independent R.v.s

Q/Z=X+Y
a PDF of Z 1s the convolution of PDFs of X and Y
pz(z) = px(x)* py(y). Can use transforms!
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Correlation

e indicates the strength and direction of a linear relationship
between two random variables

Ox Ty

0.40 | 0.025 -

0.38 | 0.029
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Important (Discrete) Random Variable:
Bernoulli

0 The simplest possible measurement on an experiment:
Q Success (X = 1) or failure (X = 0).

O Usual notation:

P.)=P(X=D=p P (0)=P(X=0)=1-p

Q E(X)=
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Binomial can be skewed or normal
n=¢16

-
=1.7

Pr (y)—>

0 1 23 4 5 6 7 8 91011121314 1516 17 18 19 20

r— Depends upon

(c) Binomial distribution with mean p = 0.8 and n = 20.

Mean pandn !
u=E(x)=np

Pr (y) —

Standard Deviation

3 45 6 7 9 10 11 12 13 14 15 16 17 18 19 20
0 — /\/ n p (1 — p) (d) Binomial distribution withmean p = 0.5 andn = 20.

FIGURE 5.4. (continued)
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Important Random Variable:
Poisson

O A Poisson random variable X is defined by its PMF: (limit of binomial)

Where > () 1s a constant

E(X) =

O Poisson random variables are good for counting frequency of occurrence:
like the number of customers that arrive to a bank in one hour, or the
number of packets that arrive to a router in one second.
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Important Continuous Random
Variable: Exponential

0O Used to represent time, e.g. until the next arrival

a Has PDF P
(A forx =0
fX(x)_{O forx <0
for some > 0
Q Properties: g5 1

j fo(x)dx=1 and E(X)=—
) A
a Need to use integration by Parts!
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Gaussian/Normal

fx(x)
O Normal Distribution: S}
Completely characterized by 7
mean (W) and variance (G?) |

O Q-function: one-sided tail of

normal pdf

P o J. 2y
Q(z) =»(x > 2) = / Y /24y,
2(2) = pl = 7

QO erfc(): two-sided tail.

erf(x)
0.5

0.4+

0.3+

0.2+

0.1

a So:

Ci2)i= éerfc (;§>
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Maximum Likelihood (ML) Detection:
Concepts

19

Mohamed Khedr




Likelihood Principle

O L 1 1@

O Experiment:
A Pick Urn A or Urn B at random
a Select a ball from that Urn.
a The ball 1s black.
O What 1s the probability that the selected Urn 1s A?
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Likelihood Principle (Contd)

00 (Y Yo

Write out what you know!
P(Black | UrnA) =1/3
P(Black | UrnB) = 2/3
P(Urm A)=P(Urn B) =1/2
We want P(Urn A | Black).

Gut feeling: Urn B is more likely than Urn A (given that the ball is black).
But by how much?

This is an inverse probability problem.

O Make sure you understand the inverse nature of the conditional
probabilities!

Solution technique: Use Bayes Theorem.
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Likelihood Principle (Contd)

Bayes manipulations:
P(Urn A | Black) =
0 P(Urn A and Black) /P(Black)
Decompose the numerator and denomenator in terms of the probabilities we know.

P(Urn A and Black) = P(Black | UrnA)*P(Urn A)
P(Black) = P(Blackl Urn A)*P(Urn A) + P(Blackl UrnB)*P(UrnB)

We know all these values Plug in and crank.
P(Urn A and Black) =1/3 *1/2

P(Black) =1/3 *1/2 +2/3*1/2 =1/2

P(Urn A and Black) /P(Black) =1/3 =0.333

Notice that it matches our gut feeling that Urn A is less likely, once we have seen black.

The information that the ball is black has CHANGED !
O From P(Urn A) =0.5 to P(Urn A | Black) = 0.333

22
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Likelihood Principle

™ Pl
@O Q

Way of thinking...
Hypotheses: Urn A or Urn B ?
Observation: “Black™
Prior probabilities: P(Urn A) and P(Urn B)
Likelihood of Black given choice of Urn: {aka forward probability}
Q P(Black | Urn A) and P(Black | Urn B)
Posterior Probability: of each hypothesis given evidence
@ P(Urn A | Black) {aka inverse probability}
Likelihood Principle (informal): All inferences depend ONLY on
A The likelihoods P(Black | Urn A) and P(Black | Urn B), and
Q The priors P(Urn A) and P(Urn B)
Result is a probability (or distribution) model over the space of possible hypotheses.
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Maximum Likelihood (intuition)

Recall:
P(Urn A | Black) = P(Urn A and Black) /P(Black) =
P(Black | UrnA)*P(Urn A) / P(Black)

P(Urn? | Black) is maximized when P(Black | Urn?) is maximized.
O Maximization over the hypotheses space (Urn A or Urn B)

P(Black | Urn?) = “likelihood”

=> “Maximum Likelihood’ approach to maximizing posterior probability
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Maximum Likelihood (ML): mechanics

Independent Observations (like Black): X, ..., X

Hypothesis 0

Likelihood Function: L(0) = P(X,, ..., X [0) =IL P(X.| 0)
Q {Independence => multiply individual likelihoods }

Log Likelihood LL(0) = X, log P(X; | 0)

Maximum likelihood: by taking derivative and setting to zero
and solving for 0

n

furr (r) = arg max P(x|6)

Maximum A Posteriori (MAP): if non-uniform prior
probabilities/distributions

0 Optimization function
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Not Just Urns and Balls:
Detection of signal in AWGN

O Detection problem:

0 Given the observation vector Z , perform a mapping from Z
to an estimate m of the transmitted symbol, m. , such that
the average probability of error in the decision 1s

minimized.

S. Z
mi — Modulator l é—»

Decision rule

26
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Binary PAM + AWGN Noise

S, 1IN
-VE O JE,

Signal s1 or s2 1s sent. z 1s received
Additive white gaussian noise (AWGN) => the likelihoods are
p,zlm) p,(zIm,) bell-shaped pdfs around sl and s2

- W, (1)

MLE => at any point on the x-axis, see which curve (blue or red)
has a higher (maximum) value and select the corresponding
signal (s1 or s2) : simplifies into a “nearest-neighbor” rule
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AWGN Nearest Neighbor Detection

Uz

&
fyvelp
choose ug
if y € Uy ug

choose 114 ®

» i1

11,

O Projection onto the signal directions (subspace) is called matched filtering to
get the “sufficient statistic”

O Error probability is the tail of the normal distribution (Q-function), based
upon the mid-point between the two signals

0 luy — ugl|
_ Qm :

2 8 Mohamed Khedr




Questions?
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