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Block diagram of a DCS

Source
e
encoder

Pulse _»Bandpass
modulate modulatel

— —

Digital modulation

Digital demodulation

~ =~

®
—
o
=
=
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Linear block codes — cont’'d

B
mappin Vn
C
[ Bases of C ]
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(@) Hamming distance d(¢; c) > 2{+ 1.
(6) Hamming distance d(¢; c) < 2£ The
received vector is denoted by r.

. . e.g
r
(a) (b)
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Linear block codes — cont’'d

The information bit stream is chopped into blocks of k bits.
Each block is encoded to a larger block of n bits.
The coded bits are modulated and sent over channel.
The reverse procedure is done at the receiver.

Channel
encoder

Data block —

Codeword

—

K bits
n-k Redundant bits

R =E Code rate

c
n

2006-02-16 Lecture 9
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Linear block codes — cont’'d

The Hamming weight of vector U, denoted by

w(U),
U.

The H
U anc

is the number of non-zero elements in

amming distance between two vectors
V, is the number of elements in which

they differ.

dU,V)=w(UDYV)

The minimum distance of a block code is

2006-02-16

d mind(U,;,U ) =min w(U,)

min = .o
i#]
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Linear block codes — cont’'d

Error detection capability is given by
€= dmin _1

Error correcting-capability t of a code, which is
defined as the maximum number of
guaranteed correctable errors per codeword, is

Ldmin _IJ
[ =
2
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Linear block codes — cont’'d

For memory less channels, the probability

that the decoder commits an erroneous
INg | " ()

decoding is Py U”J(l_p) j

p is the transition probability or bit error probability

over channel.

The decoded bit error probability is

p=-Y .(n\ (1= p)"
= J| . \pU=p
BT i

j=t+1
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Linear block codes — cont’'d

N
Discrete, memoryless, symmetric channel model

Tx. bits A } Rx. bits

Note that for coded systems, the coded bits are
modulated and transmitted over channel. For
example, for M-PSK modulation on AWGN channels
(M>2):

P Q( \/2(10g2M)EC Sm(ﬂjj: 2 Q[ \/2(log2M)EbRc Sm(ﬂn
10g2 M NO M 10g2 M N() M

where E_is energy per coded bit, given by E =R E,
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Linear block codes —cont’'d

B
mappin Vn
V. C
— Bases of C

= A matrix G is constructed by taking as its J
rows the vectors on the basis, {V:. V......

o v v e Y
1 12 1
V, "
A% A% A%
: 21 22 2
G=|: |=]| . .
V.,
Vi Vi Vin |
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Linear block codes — cont’'d

Encoding in (n,k) block code

U=mG
/ NI

(U, Uyy...,u, ) =(m,m,,..., m,)-

(u,uyy...;u )=m,-V,+m, -V, +...+m, -V
1 2 n 1 1 2 2 2 k

The rows of G, are linearly independent.
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Linear block codes — cont’'d

Example: Block code (6,3)

Message vector Codeword

000 000000

v, 110100 100 110100
G=|V, =1011010 010 011010
Vi) (101001 ] 110 101110

001 101001

101 011101

011 110011

111 000111

2006-02-16 Lecture 9
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Linear block

codes — cont’'d

Systematic block code (n,k)
For a systematic code, the first (or last) k

elements in the cod

eword are information bits.

G=[P:1,

I, =kXk 1C

P, =kX(n—k) matrix

entity matrix

U — (ulguzrﬂaun) — (Pl

s Daseees Dyrs My s My e, 1, )

sy g
parity bits message bits
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Linear block codes — cont’'d

For any linear code we can find an
matrix H,_,,., , which its rows are
orthogonal to rows of G :

H is called t

GH =0

ne parity check matrix and

its rows are linearly independent.
For systematic linear block codes:

2006-02-16

H=[I,_ P']
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Linear block codes — cont’'d

Data source ——— Format

Data sink Format

—

Channel
encoding

—

A

m

Channel
decoding

Modulation 7

channel

r=U+e

r=(r,r,...,r,) received codeword or vector

e=(e,e,,....,e,) error pattern or vector

Syndrome testing:

>
)l

emodulatioﬂ
Detection

i

S is syndrome of r, corresponding to the error

pattern e.

2006-02-16

S=rH' =eH’
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Linear block codes — cont’'d

Standard array

Forrowi=273,....277" find a vector in V_ of minimum
weight which is not already listed in the array.

Call this pattern e, and form the i:th row as the
corresponding coset

Z€10

Codeword\\U1 U2 coe U .

2

e, | e, ®U, .- e2€r)U2k -

coset

/ € n—k

n—k
coset leaders 2 2

DU, DU,

2I’lk
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Linear block codes — cont’'d

Standard array and syndrome table decoding
Calculate S=rH’
Find the coset leader, é =e. , corresponding to S.
Calculate U=r+¢é and corresponding m.

Note that U=r+é=(U+e)+é=U+(e+¢&)
= If é=e, erroris corrected.
= If éze, undetectable decoding error occurs.
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Example: Standard array for the (6,3) code

000000

Linear block codes — cont’'d

110100

011010

codewords

101110

\

101001

011101

110011

000111

000001
000010
000100
001000
010000
100000
010001

~

2006-02-16

110101
110110
110000
111100
100100
010100
100101

011011
011000
011100

Coset leaders

101111
101100
101010

101000
101011
101101

Lecture 9

011100
011111
011010

110010
110001
110111

000110
000101
000110

N

coset

010110

20



Error pattern Syndrome

Linear block codes — cont’'d

000000
000001
000010
000100
001000
010000
100000
010001

2006-02-16

000
101
011
110
001
010
100
111

U=(101110) transmitted.
r=(001110) 1isreceived.

®m The syndrome of ris computed :
S=rH' =(001110)H" =(100)

m Error pattern corresponding to this syndromeis
€ =(100000)

=) The corrected vector 1s estimated

A

U=r+e=(001110)+(100000)=(101110)

Lecture 9 21



Hamming codes

Hamming codes

Hamming codes are a subclass of linear block codes
and belong to the category of perfect codes.

Hamming codes are expressed as a function of a
single integer m > 2 .

Code length : n=2"-1
Number of information bits: k =2" —m—1
Number of parity bits : n-k =m

Error correction capability: =1

The columns of the parity-check matrix, H, consist of
all non-zero binary m-tuples.
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Hamming codes

Example Systematic Hamming code (7,4)

1 0 0:0 1 1
H:010101 =1, P']
_001110_
01 1:1 0 0 0]
G:‘o10100_u)E ]
1 0,0 010 b
_110001_
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Example of the block codes

= yncoded
Hamming(7,4)
Hamming(15,11)

E,/N,[dB]

Lecture 9
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Convolutional codes

Convolutional codes offer an approach to error control
coding substantially different from that of block codes.

A convolutional encoder:

= encodes the entire data stream, into a single codeword.

= does not need to segment the data stream into blocks of fixed
size (Convolutional codes are often forced to block structure by periodic
truncation).

= is @ machine with memory.

This fundamental difference in approach imparts a
different nature to the design and evaluation of the code.

Block codes are based on algebraic/combinatorial
techniques.

Convolutional codes are based on construction techniques.
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Convolutional codes-cont'd

B
A Convolutional code is specified by
three parameters (n,k,K) or (k/n,K)
where

R.=k/n is the coding rate, determining the
number of data bits per coded bit.

= In practice, usually k=1 is chosen and we
assume that from now on.
K is the constraint length of the encoder a
where the encoder has K-I memory
elements.

= There is different definitions in literatures for
constraint length.
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Block diagram of the DCS

o

2006-02-16

VaN VaN

m = (m,,m,,..

S e
Information Rate 1/n
Modulator
source Conv. encoder
_ U=G(m
m—(ml,mZ,...,ml-,...) ( )
Input sequence — (UlaU27U37“'7Uiv'“) 9
CodewordY sequence §
(@]
U. = Upjyens U jjeens Uy
Branch Word\En coded bits)
Information|, Rate 1/n .
i < < Demodulator
sink Conv. decoder

.,mi,...) Z:(Zl,Zz,Z3,...,Zi,...)
received\gequence
Z = ZyppersZjjreenr i
— N b
Demodulator outputs N

for Branch word i n outputs per Branch word
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A Rate 2 Convolutional encoder
e
Convolutional encoder (rate V2, K=3)

3 shift-registers where the first one takes the
incoming data bit and the rest, form the memory
of the encoder.

Input data bits
m

2006-02-16

SP

A

— >

w U, { First coded bit
[ ]
(Branch word)

Output coded bits

N

D

®
) U, { Second coded bit
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A Rate /2 Convolutional encoder

Time Output Time Output

(Branch word) (Branch word)
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Time

A Rate /2 Convolutional encoder

Output

Time Output

1Y 1Y
(Branch word) fan | (Branch word)
i ’/ A \
I u,

m=(101) —

Encoder

— U=d1 10 00 10 11)

2006-02-16
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Effective code rate

e
Initialize the memory before encoding the first bit (all-

ZEro)

Clear out the memory after encoding the last bit (all-
Zero)
Hence, a tail of zero-bits is appended to data bits.

data tail —  Encoder —— codeword

Effective code rate :
L is the number of data bits and k=1 is assumed:

R, = L
n(L+K —1)

<R
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Encoder representation

Vector representation:

We define n binary vector with K elements (one
vector for each modulo-2 adder). The i:th element
in each vector, is "1” if the i:th stage in the shift

register is connected to the corresponding modulo-
2 adder, and “0” otherwise.

= Example:

g =U1D

g, =(101) T Rt
v |
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Encoder representation — cont’d

Impulse response representation:

The response of encoder to a single “one” bit that
goes through it.

= Example: Branch word
Register
contents U U,
100 1 1
Inputsequence: 1 0 O 010 L0
QOutput sequence: 11 10 11
e 001___1_1___
Input m Output
1 i 11 10 11
0 i 00 00 00
1 11 10 11

Modulo-2 sum: .11 10 00 10 11
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Encoder representation — cont'd
N
Polynomial representation:

We define n generator polynomials, one for each
modulo-2 adder. Each polynomial is of degree K-1 or
less and describes the connection of the shift

registers to the corresponding modulo-2 adder.
= Example:

g (X)=g, +8  X+g, ) X =1+ X+X’
g.(X)=g?+g?P X +gPX*=1+X"?
The output sequence is found as follows:

U(X)=m(X)g,(X) interlaced with m(X)g,(X)
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Encoder representation —cont'd

In more details:
m(X)g (X)=(1+X)1+X+X)=1+X+ X’ + X"
m(X)g,(X)=(1+X)1+X*)=1+X"
m(X)g (X)=1+X+0.X’+ X+ X"
m(X)g,(X)=1+0.X+0.X*+0.X° +X*
UX)=1LD+1,0)X +(0,00X*+1,0 X +(1,DHX"
U=11 10 00 10 11
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State diagram

A finite-state machine only encounters a
finite number of states.

State of a machine: the smallest amount
of information that, together with a
current input to the machine, can predict
the output of the machine.

In a Convolutional encoder, the state is

represented by the content of the
memory.

Hence, there are 2% states.
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State diagram — cont'd

A state diagram is a way to represent
the encoder.

A state diagram contains all the states
and all possible transitions between
them.

Only two transitions initiating from a
state

Only two transitions ending up in a state
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State diagram — cont'd

Current input Next output

0/00 Output state state
Fs ™ s, [0 ]S, | 00
N/ 00 | 1 |5, 11
1/00 = Sl 0 So 11
01 1S5, 00
\ s, | 0 ]S |10
1/(;1‘\\» S, 0/01 10 1 S3 01
, ,i< 53 O S1 O 1
110/ 11 | 1|55 10
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Trellis — cont’d

I
Trellis diagram is an extension of the state

diagram that shows the passage of time.
Example of a section of trellis for the rate Y2 code

State

Time

2006-02-16 Lecture 9
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Trellis —cont’'d

A trellis diagram for the example code

Tail bits

Input bits
1 0 1 0 0
Output bits
11 10 00 10 11
.- 0/00 0/00 0/00 0/00 0/00
*ial \1a1 *1@1 *ial \iﬂl
1% S 1% S 1% S 1% S 1 " Se
AN _A/00 N3 _ A0 N3 _A00 N3 _400 N3 _ 100
AN VAN (VA NN I VAR I VAN T
1401 1401 1401 1401 1401
\ \ \ \ \
\ \ \ \ \

A S\ N DA N N A N N ) /6 N N | N N
et aftlaeltuel safettelalete. defeettteln sfelaetatte L
[ t, t, t s t
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Trellis — cont'd

e
Input bits Tail bits
Output bits
11 Ll 00 10 11
. _ 0/00 - 0/00 - 0/00 0/00 0/00
b 141 h 141 ~4/41
[ ~ ~ ~ ~ ' 1 ~ : | 1 . | 1
Y010 Yo 400
S
S A 10 510
o o 1401 1401
N \
N \
AN DA AN DA
[ o @ - __ ° .
I[ ) ' ! 1 | [' R
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Trellis of an example 2 Conv. code

B
Input bltS Tall bltS
1 0 1 0 0
Output bits
11 10 00 10 11
0/00 o _ 0/00 o _ 0/00 0/00 0/00
‘1a1 *1a1
° i1 il e 011 o
\ | 10 \\ '
Z < 94 n
0 ® 1401 1401 o
\ \
\ \
A S\
\
’ ’ i V) St o °
[l J 2 [3 t 4 [ r .-
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Soft and hard decision decoding

In hard decision:

The demodulator makes a firm or hard decision
whether one or zero is transmitted and provides

no other information for the decoder such that
how reliable the decision is.

In Soft decision:

The demodulator provides the decoder with some
side information together with the decision. The
side information provides the decoder with a
measure of confidence for the decision.
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Soft and hard decoding

T
Regardless whether the channel outputs hard or soft decisions
the decoding rule remains the same: maximize the probability

In p(y,x,)=2%Inp(y,|x,)

However, in soft decoding decision region energies must be

accounted for, and hence , rather that
Hamming metric d,. is used
0 ] 0 0
Hard-decision
binary Two—bit

symimetric 1

soft—decision
channel

discrete
memoryless
< ¢hannel

—_—

Three—bil
soft-cecision Transition for Pr[310] is indicated

memoryless

came DY the arrow

-~ b R W b = D

2006-02-16
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Coding can be realized by soft-decoding or hard-decoding principle

Decision regions

For soft-decoding reliability (measured by bit-energy) of decision region

must be known

Example: decoding BPSK-signal: Matched filter output is a continuos
number. In AWGN matched filter output is Gaussian

For soft-decoding
several decision
region partitions
are used

Transition probability

for Pr[3I0], e.g. prob.
that transmitted ‘0’
falls into region no: 3

2006-02-16

Priyv|0]

{ Matched filter output v

1

D

3

() =t | == D =

= ] =ttt 5 =]

— ==

matll

Lecture 9

No
guantization

y

Hard
quantization

Two—bit

guantization

" Three-bit

quantization
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Soft and hard decision decoding ...

ML soft-decisions decoding rule:

Choose the path in the trellis with minimum
Euclidean distance from the received
sequence

ML hard-decisions decoding rule:

Choose the path in the trellis with minimum
Hamming distance from the received
sequence
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The Viterbi algorithm

The Viterbi algorithm performs Maximum
likelihood decoding.

It finds a path through trellis with the largest
metric (maximum correlation or minimum
distance).
At each step in the trellis, it compares the partial
metric of all paths entering each state, and keeps

only the path with the largest metric, called the
survivor, together with its metric.
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Example of hard-decision Viterbi decoding

1 = (100)
U=@1 10 11 00 11)

Z=(11 10 11 10 0OI) ‘

——————————————————————————————————

'm = (101) |

0 0
Partial metric
) I(S(t.),t.)
0 [ o
- s Branch metric
0 [ ) 0
| | | | | |
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Interleaving

Convolutional codes are suitable for memoryless
channels with random error events.

Some errors have bursty nature:

Statistical dependence among successive error events
(time-correlation) due to the channel memory.

= Like errors in multipath fading channels in wireless
communications, errors due to the switching noise, ...

“Interleaving” makes the channel looks like as a
memoryless channel at the decoder.
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Interleaving ...

Interleaving is done by spreading the coded
symbols in time (interleaving) before
transmission.

The reverse in done at the receiver by
deinterleaving the received sequence.

“Interleaving” makes bursty errors look like
random. Hence, Conv. codes can be used.

Types of interleaving:
Block interleaving
Convolutional or cross interleaving
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Consider a code with t=1 and 3 coded bits.

Interleaving ...

A burst error of length 3 can not be corrected.

A1|A2|A3|B1|B2|B3|C1|C2|C3
2 errors
et us use a block interleaver 3X3
A1|A2|A3|B1|B2|B3|C1|C2|C3 Al1|B1|C1|A2|B2|C2|A3|B3|C3
Interleaver Deinterleaver

Al1|B1|C1|A2|B2|C2|A3|B3|C3 A1|A2|A3|B1|B2|B3|C1|C2|C3
Terrors 1errors  1errors

2006-02-16 Lecture 9
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Concatenated codes

A concatenated code uses two levels on coding, an
inner code and an outer code (higher rate).

Popular concatenated codes: Convolutional codes with
Viterbi decoding as the inner code and Reed-Solomon codes
as the outer code

The purpose is to reduce the overall complexity, yet

achieving the required error performance.

Input

_—hput Outer Interleaver »  Inner Modulate

data oduid }.

encoder encoder

=
o
=
=
@

Output ) j

~uput Outer Deinterleaver|* Inner emodulate

data decoder decoder
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Optimum decoding

If the input sequence messages are equally likely, the
optimum decoder which minimizes the probability of
error is the Maximum likelihood decoder.

ML decoder, selects a codeword among all the
possible codewords which maximizes the likelihood
function p(Z1U"") where Z is the received
sequence and U™ is one of the possible codewords:

2Lcodewords
to search!!!

»ML decoding rule:
Choose U™ if p(ZIU")= max p(ZI1U"™)

over all U™
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The Viterbi algorithm

The Viterbi algorithm performs Maximum likelihood
decoding.

It find a path through trellis with the largest metric
(maximum correlation or minimum distance).

It processes the demodulator outputs in an iterative
manner.

At each step in the trellis, it compares the metric of all
paths entering each state, and keeps only the path with
the largest metric, called the survivor, together with its
metric.

It proceeds in the trellis by eliminating the least likely
paths.

It reduces the decoding complexity to L2
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The Viterbi algorithm - cont'd

Viterbi algorithm:

Do the following set up:

For a data block of L bits, form the trellis. The trellis
has L+K-1 sections or levels and starts at time 7, and
ends up at time 7, x

Label all the branches in the trellis with their
corresponding branch metric.

For each state in the trellis at the time ¢ which is
denoted by S(¢.)e {0.1,...,25""}, define a parameter [(S (7,),t,)

Then, do the following:

2006-02-16 Lecture 9 55



The Viterbi algorithm - cont'd

Set r,;)=0 and i=2.

At time : , compute the partial path metrics for
all the paths entering each state.

Set I'(S(t,).t,) equal to the best partial path metric
entering each state at time ¢,.

Keep the survivor path and delete the dead paths
from the trellis.

If i<L+K, increase ¢ by 1 and return to step 2.
Start at state zero at time 7, . Follow the
surviving branches backwards through the

trellis. The path thus defined is unique and
correspond to the ML codeword.
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Example of Hard decision Viterbi

m = (101)

decoding

U=d1 10 00 10 11)
Z=(11 10 11 10 0OI)

o 000 o 000 .  0/00 0/00 0/00
S § RS 7/ § B Vi §
] Y \ 1 e 0A1 o OA1 o
SON0/10 400
0 ¢ 101 o1 " 0
\ /01 /01

0 S 0 0

3 . - y - ro
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Example of Hard decision Viterbi

decodingzcont'd
Label al the branches with the branch metric
(Hamming distance)

r(S).t)

0 > 0 ®
! -7 |
0 * 2B / 0
N
N | §
\
2.
\ \
\ \
\ \
/ 7
0 ® ¥ 1----- 8 0
| | |
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Example of Hard decision Viterbi

decoding-cont’d

@2 @:1Q 2041 Q4 C
0. 1 0.
(0 O
0 < < 0 0
SO (O
\\ /R4 \\
‘ N 1 ‘
2
N \
\\ AN
o * ¥ 1----- ! e 0
| | |
r t, [, l, ls I
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Example of Hard decision Viterbi

decoding-cont’d

@ 2 @1 G 2 Q4 Q 4 C
0. 1. 0.
0 Q)
0 S < o 0
NOZGNOIN @
\\ R \\
‘ ' 1 ‘
2
N N
\\ N
0 o ¥ 1----- ’ o 0
| | |
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Example of Hard decision Viterbi

decoding-cont’d

@: Q010 2.0 1 Q 1
0. 1 0.
(0 W ©
0 < < 0 0
NOZDNON®
\\ /R4 \\
‘ N 1 ‘
2.
NORIRAO
\\ AN
o * ¥ 1----- ! e 0
| | |
r t, [, l, ls I
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Example of Hard decision Viterbi

decoding-cont’d

OIFONNONFNOINONTI®
0. 1. 0.
0 Q) X
0 S < o 0
NOZS OO
\\ R \\
‘ ' 1 ‘
2.
ROSRAO
\\ N
0 o ¥ 1----- ’ o 0
| | |
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Example of Hard decision Viterbi

decoding-cont’d

@ 2 @1 Q 2@ 1+ @ 1 C
0. 1. 0.
0 Q) X
0 S < o 0
NOZS OO
\\ R \\
‘ ' 1 ‘
2.
ROSRAO
\\ N
0 o ¥ 1----- ’ o 0
| | |
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Example of Hard decision Viterbi decoding-
50000,
= Trace back and then:

1 = (100)
U=@1 10 11 00 00)

\\ \\ X
~ ~
So ~
! 1 0
O So S~
So ~
) e / e
~
~
a ) )
N
Y
N

N
AN
\\ §
N \,
N //
<
AN ” \\ Y
0 \ )
¢ 3 1
Y
2.
AY
RORIA O
\\ \
4 2
0 o v }----- 0 0
| | |
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Encoder for the Binary (3. 2. 2) Convolutional Code

o vy = (1000)
o vo = (1100)

U] — {10\) . T_------- --------- .
Uy = (ll)/ X —0—"\—1——0 vz = (0001)

—9
L )

w = (11 01) v = (110 010 000 001)
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State b

01
A
010 110 111 001
001
111
State a >
™ L-
101
011
101 011
Y
State

11

State diagram for
K=2,k=2,n=3
convolutionaG]7 code.



