

## Introduction

- Course website:
www.aast.edu/~hshaban
- E-mail: dr.hebashaban@gmail.com
- Textbook:

Communication Networks: Fundamental
Concepts and Key Architectures, Alberto-
Leon Garcia and I. Widjaja, $2^{\text {nd }}$ ed, McGrawHill, 2004.

## Chapter 1 Communication Networks and Services

Network Architecture and Services
Telegraph Networks \& Message Switching
Telephone Networks and Circuit Switching
Computer Networks \& Packet Switching Future Network Architectures and Services Key Factors in Network Evolution


# Chapter 1 Communication Networks and Services 

## Network Architecture and Services

## Communication Services \& Applications

- A communication service enables the exchange of information between users at different locations.
- Communication services \& applications are everywhere.



## Communication Services \& Applications

- A communication service enables the exchange of information between users at different locations.
- Communication services \& applications are everywhere.


## Web Browsing



Retrieval of information from web servers

## Communication Services \& Applications

- A communication service enables the exchange of information between users at different locations.
- Communication services \& applications are everywhere.

Instant Messaging


## Communication Services \& Applications

- A communication service enables the exchange of information between users at different locations.
- Communication services \& applications are everywhere.

Telephone


Real-time bidirectional voice exchange

## Communication Services \& Applications

- A communication service enables the exchange of information between users at different locations.
- Communication services \& applications are everywhere.

Cell phone


Real-time voice exchange with mobile users

## Communication Services \& Applications

- A communication service enables the exchange of information between users at different locations.
- Communication services \& applications are everywhere.



## Many other examples!

- Peer-to-peer applications
- Audio \& video streaming
- Network games
- On-line purchasing
- Text messaging in PDAs, cell phones (SMS)
- Voice-over-Internet


## Services \& Applications

- Service: Basic information transfer capability
- Internet transfer of individual block of information
- Internet reliable transfer of a stream of bytes
- Real-time transfer of a voice signal
- Applications build on communication services
- E-mail \& web build on reliable stream service
- Fax and modems build on basic telephone service
- New applications build on multiple networks
- SMS builds on Internet reliable stream service and cellular telephone text messaging


## What is a communication network?

Communication Network

- The equipment (hardware \& software) and facilities that provide the basic communication service
- Virtually invisible to the user; Usually represented by a cloud
- Equipment
- Routers, servers, switches, multiplexers, hubs, modems, ...
- Facilities
- Copper wires, coaxial cables, optical fiber
- Ducts, conduits, telephone poles ...

How are communication networks designed and operated?

## Communication Network Architecture

- Network architecture: the plan that specifies how the network is built and operated
- Architecture is driven by the network services
- Overall communication process is complex
- Network architecture partitions overall communication process into separate functional areas called layers
Next we will trace evolution of three network architectures: telegraph, telephone, and computer networks


## Network Architecture Evolution



| Telegraph | Telephone | Internet, Optical | Next |
| :--- | :---: | :---: | :---: |
| networks | networks | \& Wireless | Generation |
|  |  | networks | Internet |

## Network Architecture Evolution

- Telegraph Networks
- Message switching \& digital transmission
- Telephone Networks
- Circuit Switching
- Analog transmission $\rightarrow$ digital transmission
- Mobile communications
- Internet
- Packet switching \& computer applications
- Next-Generation Internet
- Multiservice packet switching network


## Chapter 1 <br> Communication Networks and Services

Telegraph Networks \& Message Switching

## Telegraphs \& Long-Distance Communications

Approaches to long-distance communications

- Courier: physical transport of the message
- DHL, Aramex, FedEx
- Telegraph: message is transmitted across a network using signals
- Drums, beacons, mirrors, smoke, flags, semaphores...
- Electricity, light
- Telegraph delivers message much sooner


## Optical (Visual) Telegraph

- Claude Chappe invented optical telegraph in the 1790's
- Semaphore mimicked a person with outstretched arms with flags in each hand
- Different angle combinations of arms \& hands generated hundreds of possible signals
- Code for enciphering messages kept
 secret
- Signal could propagate 800 km in 3 minutes!


## Message Switching

- Network nodes were created where several optical telegraph lines met (Paris and other sites)
- Store-and-Forward Operation:
- Messages arriving on each line were decoded
- Next-hop in route determined by destination address of a message
- Each message was carried by hand to next line, and stored until
 operator became available for next transmission


## Electric Telegraph

- William Sturgeon Electro-magnet (1825)
- Electric current in a wire wrapped around a piece of iron generates a magnetic force
- Joseph Henry (1830)
- Current over 1 mile of wire to ring a bell
- Samuel Morse (1835)
- Pulses of current deflect electromagnet to generate dots \& dashes
- Experimental telegraph line over 40 miles (1840)
- Signal propagates at the speed of light!!!
- Approximately $2 \times 10^{8}$ meters/second in cable


## Digital Communications

- Morse code converts text message into sequence of dots and dashes
- Use transmission system designed to convey dots and dashes

|  | Morse <br> Code |
| :---: | :--- | :---: | :--- | :---: | :--- | :---: | :--- |
| A | $\cdot-$ | J | $\cdot---$ | S | $\cdots$ | 2 | $\cdots---$ |
| B | $-\cdots$ | K | $-\cdot-$ | T | - | 3 | $\cdots--$ |
| C | $-\cdot-\cdot$ | L | $\cdot-\cdots$ | U | $\cdots-$ | 4 | $\cdots \cdots-$ |
| D | $-\cdots$ | M | -- | V | $\cdots-$ | 5 | $\cdots \cdots$ |
| E | $\cdot$ | N | $-\cdot$ | W | $\cdot--$ | 6 | $-\cdots$ |
| F | $\cdots-\cdot$ | O | --- | X | $-\cdots-$ | 7 | $--\cdots$ |
| G | $--\cdot$ | P | $\cdot--\cdot$ | Y | $-\cdot--$ | 8 | $---\cdots$ |
| H | $\cdots \cdot$ | Q | $--\cdot-$ | Z | $--\cdots$ | 9 | $----\cdot$ |
| I | $\cdots$ | R | $\cdot-\cdot$ | 1 | $\cdot----$ | 0 | ----- |

## Electric Telegraph Networks

- Electric telegraph networks exploded
- Message switching \& Store-and-Forward operation
- Key elements: Addressing, Routing, Forwarding
- Optical telegraph networks disappeared



## Baudot Telegraph Multiplexer

- Operator 25-30 words/minute
- but a wire can carry much more
- Baudot multiplexer: Combine 4 signals in 1 wire
- Binary block code (ancestor of ASCII code)
- A character represented by 5 bits
- Time division multiplexing
- Binary codes for characters are interleaved
- Framing is required to recover characters from the binary sequence in the multiplexed signal
- Keyboard converts characters to bits


## Baudot Telegraph Multiplexer

Keyboard


## Elements of Telegraph Network Architecture

- Digital transmission
- Text messages converted into symbols (dots/dashes, zeros/ones)
- Transmission system designed to convey symbols
- Multiplexing
- Framing needed to recover text characters
- Message Switching
- Messages contain source \& destination addresses
- Store-and-Forward: Messages forwarded hop-by-hop across network
- Routing according to destination address


## Chapter 1 Communication Networks and Services

Telephone Networks and Circuit Switching


## Bell's Telephone

- Alexander Graham Bell (1875) working on harmonic telegraph to multiplex telegraph signals
- Discovered voice signals can be transmitted directly
- Microphone converts voice pressure variation (sound) into analogous electrical signal
- Loudspeaker converts electrical signal back into sound
- Telephone patent granted in 1876
- Bell Telephone Company founded in 1877

Signal for "ae" as in cat


## Bell's Sketch of Telephone



## Signaling

- Signaling required to establish a call
- Flashing light and ringing devices to alert the called party of incoming call
- Called party information to operator to establish calls


Signaling + voice signal transfer

## The $N^{2}$ Problem

- For $N$ users to be fully connected directly
- Requires $N(N-1) / 2$ connections
- Requires too much space for cables
- Inefficient \& costly since connections not always on



## Telephone Pole Congestion



## Circuit Switching

- Patchcord panel switch invented in 1877
- Operators connect users on demand
- Establish circuit to allow electrical current to flow from inlet to outlet
- Only $N$ connections required to central office



## Manual Switching



## Strowger Switch

- Human operators intelligent \& flexible
- But expensive and not always discreet
- Strowger invented automated switch in 1888
- Each current pulse advances wiper by 1 position
- User dialing controls connection setup
- Decimal telephone numbering system
- Hierarchical network structure simplifies routing - Area code, exchange (CO), station number



## Strowger Switch



## Hierarchical Network Structure



Telephone subscribers connected to local CO (central office)
Tandem \& Toll switches connect CO' s


## Computer Connection Control

- A computer controls connection in telephone switch
- Computers exchange signaling messages to:
- Coordinate set up of telephone connections
- To implement new services such as caller ID, voice mail, . . .
- To enable mobility and roaming in cellular networks
- "Intelligence" inside the network
- A separate signaling network is required



## Digitization of Telephone Network

- Pulse Code Modulation digital voice signal
- Voice gives 8 bits/sample $\times 8000$ samples $/ \mathrm{sec}=64 \times 10^{3} \mathrm{bps}$
- Time Division Multiplexing for digital voice
- T-1 multiplexing (1961): 24 voice signals $=1.544 \times 10^{6} \mathrm{bps}$
- Digital Switching (1980s)
- Switch TDM signals without conversion to analog form
- Digital Cellular Telephony (1990s)
- Optical Digital Transmission (1990s)
- One OC-192 optical signal $=10 \times 10^{9} \mathrm{bps}$
- One optical fiber carries 160 OC-192 signals $=1.6 \times 10^{12}$ bps!

All digital transmission, switching, and control

## Digital Transmission Evolution

Wavelength Division


## Elements of Telephone Network Architecture

- Digital transmission \& switching
- Digital voice; Time Division Multiplexing
- Circuit switching
- User signals for call setup and tear-down
- Route selected during connection setup
- End-to-end connection across network
- Signaling coordinates connection setup
- Hierarchical Network
- Decimal numbering system
- Hierarchical structure; simplified routing; scalability
- Signaling Network
- Intelligence inside the network

