

HIGHER ORDER JOINT DISTRIBUTION AND
PROBABILITY DENSITY FUNCTIONS

$$F_X(x_1, ..., x_N; t_1, ..., t_N) \stackrel{\triangle}{=} P\{X(t_1) \le x_1, ..., X(t_N) \le x_N\}$$

$$f_X(x_1, ..., x_N; t_1, ..., t_N) \stackrel{\triangle}{=} \frac{\partial^N F_X(x_1, ..., x_N; t_1, ..., t_N)}{\partial x_1 ... \partial x_N}$$
Two processes $X(t)$ and $Y(t)$ are statistically independent iff

$$f_{X,Y}(x_1, ..., x_N; y_1, ..., y_M; t_1, ..., t_N; t'_1, ..., t'_M)$$
For all arbitrary choices of the time parameters $t_1, ..., t_N, t_1', ..., t_N'$

- A random process X(t) is said to be ergodic if its time averages are the same for all functions and equal to the corresponding ensemble averages.
- Testing the ergodicity of a random process is usually very difficult.
- A reasonable assumption in the analysis of most communication signals is that a random waveform is ergodic in the mean and in the autocorrelation.

CROSS-CORRELATION FUNCTION (CCF)

The cross-correlation function $R_{XY}(t, t + t)$ of two processes X(t) and Y(t) is defined as

 $R_{XY}(t,t+\tau) \stackrel{\Delta}{=} \mathbf{E}[X(t) \cdot Y(t+\tau)]$

X(t) and Y(t) are called jointly wide-sense stationary if both are individually WSS and $R_{XY}(t, t + \tau) = R_{XY}(\tau)$, i.e. independent of t

If $R_{XY}(t, t + \tau) = 0$ then X(t) and Y(t) are <u>orthogonal</u>

Processes X(t) and Y(t) are jointly ergodic if individually ergodic and

 $\mathbf{A}[X(t) \cdot Y(t+\tau)] = \mathbf{E}[X(t) \cdot Y(t+\tau)] = R_{XY}(\tau)$

(Processes have to be jointly WSS)