EC 421 Statistical Communication Theory

Instructor: Dr. Heba A. Shaban

Lecture \# 1

BASIC ANALOG COMMUNICATIONS SYSTEM

Baseband signal (electrical signal) Transmitter

Digital Communication System

Transmission Channel

- Wire-line Channel

- Wireless Communication Channel

Wireless networks

Satellite comm.

Mobile comm.

OUTCOMES, EVENTS AND SAMPLE SPACE

- Random experiment: repeating the experiment produces a different (a priori unknown) outcome each time.
- An event \boldsymbol{A} is a set of outcomes:
$A=\{s$: such that s is an even number $\}$
- Sample space is the set of all possible outcomes.
"outcome" \in Event \subset Sample Space

Axioms of Probability

- Probability of any event A is non-negative: $P[A] \geq 0$.
- The probability that "the outcome belongs to the sample space" is $1: P[S]=1$.
- The probability of "the union of mutually-exclusive events" is the sum of their probabilities:
- If $\mathrm{A}_{1} \cap \mathrm{~A}_{2}=\emptyset, \Rightarrow \mathrm{P}\left[\mathrm{A}_{1} \cup \mathrm{~A}_{2}\right]=\mathrm{P}\left[\mathrm{A}_{1}\right]+\mathrm{P}\left[\mathrm{A}_{2}\right]$

Mutual Exclusivity

- In general:

$$
\mathrm{P}\left[A_{1} \cup A_{2}\right]=\mathrm{P}\left[A_{1}\right]+\mathrm{P}\left[A_{2}\right]-\mathrm{P}\left[A_{1} \cap A_{2}\right]
$$

- This formula works for both mutually exclusive and non-mutuallyexclusive events

Mutual Exclusivity

- The probability of "the union of mutually-exclusive events" is the sum of their probabilities:

$$
\text { If } A_{i} \cap A_{j}=\varnothing, i \neq j \quad \Rightarrow \quad P\left[\bigcup_{j} A_{j}\right]=\sum_{j} P\left[A_{j}\right]
$$

Conditional Probabilities

- When two events are related, in a sense that one tells us something about the other.
- Given that an event B has occurred, what is the probability of \boldsymbol{A} ?
- Given that B has occurred, this reduces the sample space: $S \rightarrow B \subset S$

Conditional Probabilities

- We need to:
- Compute the intersection of A and B.
- Normalize the probabilities by $P[B]$.

$$
\begin{aligned}
& P[A / B]=P[A \cap B] / P[B] \\
& P[A / S]=P[A \cap S] / P[S]
\end{aligned}
$$

Example on Conditional Probability

- Select a ball from an urn containing two black balls labeled 1 and 2 , and two white balls labeled 3 and 4 .
- Assuming equi-probable outcomes, find $\mathrm{P}[\mathrm{A} / \mathrm{B}]$.

$$
\boldsymbol{S}=\{(1, b),(2, b),(3, W),(4, W)\}
$$

- $A=\{(1, b),(2, b)\}$, "black ball selected".
- $B=\{(2, b),(4, W)\}$, "even-numbered ball selected".

$$
P[A / B]=\frac{P[A \cap B]}{P[B]}=\frac{0.25}{0.5}=0.5
$$

Total Probability

- The Law of Total Probability:
- If $B_{1}, B_{2}, \ldots B_{n}$ form a "partition" of S, then for any event A :

$$
\begin{gathered}
A=\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \ldots\left(A \cap B_{n}\right) \\
P[A]=P\left[A \cap B_{1}\right]+P\left[A \cap B_{2}\right]+\ldots P\left[A \cap B_{n}\right] \\
P[A]=P\left[A / B_{1}\right] \cdot P\left[B_{1}\right]+P\left[A / B_{2}\right] \cdot P\left[B_{2}\right] \ldots
\end{gathered}
$$

Bay's Rule

- If $B_{1}, B_{2}, \ldots B_{n}$ form a "partition" of \boldsymbol{S}, then for any event A :

$$
P\left[B_{j} / A\right]=\frac{P\left[A / B_{j}\right] \cdot P\left[B_{j}\right]}{\sum_{i=1}^{n} P\left[A / B_{i}\right] \cdot P\left[B_{1}\right]}
$$

Random Variables

Random Variable: assigns a number to each outcome of a random experiment, or, equivalently, to each unit in a population.

What is a Random Variable?

"Numerical outcome of a random circumstance"

Two different broad classes of random variables:

1. A continuous random variable can take any value in an interval or collection of intervals.
2. A discrete random variable can take one of a countable list of distinct values.

Discrete Random Variables

X the random variable.
$k=$ a number the discrete r.v. could assume.
$P(X=k)$ is the probability that X equals k.
Discrete random variable: can only result in a countable set of possibilities - often a finite number of outcomes, but can be infinite.

Example: It is Possible to Toss Forever

Repeatedly tossing a fair coin, and define: $X=$ number of tosses until the first head occurs
Any number of flips is a possible outcome.

$$
P(X=k)=(1 / 2)^{k}
$$

Example: How Many Girls are Likely?

Family has 3 children. Probability of a girl is ? What are the probabilities of having $0,1,2$, or 3 girls?

Sample Space: For each birth, write either B or G. There are eight possible arrangements of B and G for three births. These are the simple events.

Sample Space and Probabilities: The eight simple events are equally likely.

Random Variable X : number of girls in three births. For each simple event, the value of X is the number of G's listed.

Example: How Many Girls? (CONT)

Value of X for each simple event:

Simple Event	BBB	BBG	BGB	GBB	BGG	GBG	GGB	GGG
Probability	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$
$\boldsymbol{X}=\#$ of Girls	0	1	1	1	2	2	2	3

Probability distribution function for Number of Girls X :

\boldsymbol{k}	0	1	2	3
$\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{k})$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Graph of the pdf of X :

Conditions for Probabilities for Discrete Random Variables

Condition 1
The sum of the probabilities over all possible values of a discrete random variable must equal 1.

Condition 2
The probability of any specific outcome for a discrete random variable must be between 0 and 1.

Cumulative Distribution Function (CDF) of a Discrete Random Variable

Cumulative distribution function (cdf) for a random variable X is a rule or table that provides the probabilities $P(X \leq k)$ for any real number k.
Cumulative probability $=$ probability that X is less than or equal to a particular value.

Example: Cumulative Distribution Function for the Number of Girls (cont)

\boldsymbol{k}	0	1	2	3
$\boldsymbol{P}(\boldsymbol{X} \leq \boldsymbol{k})$	$1 / 8$	$4 / 8$	$7 / 8$	1

CDF Properties

- $F_{x}(a)$ is a non-decreasing function
- $0 \leq F_{x}(a) \leq 1$
- $F_{x}($-infinity $)=0$
- $F_{x}($ infinity $)=1$
-

$$
F_{\mathrm{x}}(a)=\lim _{\varepsilon \rightarrow 0} \int_{-\infty}^{a+\varepsilon} f_{\mathrm{x}}(x) d x
$$

Cumulative Distribution Function (CDF)

- The cumulative distribution function (CDF) of the RV, x, is given by $F_{x}(a)=P_{x}(x \leq a)$

Probability Density Function (CDF)

- The probability density function(PDF) of the $\mathrm{RV} x$ is given by $f(x)$
- Shows how probability is distributed across the axis

$$
f_{\mathrm{x}}(x)=\left.\frac{d F_{\mathrm{x}}(a)}{d a}\right|_{a=x}=\left.\frac{d P_{\mathrm{x}}(x \leq a)}{d a}\right|_{a=x} \quad f_{x}(x)
$$

Probability Density Function (PDF) Properties

- $f_{x}(x)$ is non-negative, $f_{x}(x) \geq 0$
- The total probability adds up to one

$$
\int_{-\infty}^{\infty} f_{x}(x) d x=F_{\mathrm{x}}(\infty)=1
$$

Calculating Probability

- To calculate the probability for a range of values

$$
\begin{aligned}
P_{\mathrm{x}}(a<x \leq b)= & P_{\mathrm{x}}(x \leq b)-P_{\mathrm{x}}(x \leq a) \\
& =F_{\mathrm{x}}(b)-F_{\mathrm{x}}(a)=\lim _{\varepsilon \rightarrow 0} \int_{a+\varepsilon}^{b+\varepsilon} f_{\mathrm{x}}(x) d x
\end{aligned}
$$

Mean of a Random Variable

- Discrete Random Variable

$$
\mathrm{E}(X)=\sum_{i=1}^{n} x_{i} P\left(X=x_{i}\right)
$$

$E($.$) is called expectation of (.)$

- Continuous Random Variable

$$
\mathrm{E}(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

$f_{X}(x)$ is probability density function of x

Moments of a Random Variable

- Discrete Random Variable

$$
\mathrm{E}\left(X^{k}\right)=\sum_{i=1}^{n} x_{i}^{k} P\left(X=x_{i}\right)
$$

- Continuous Random Variable

$$
\mathrm{E}\left(X^{k}\right)=\int_{-\infty}^{\infty} x^{k} f_{X}(x) d x
$$

Central Moments

- Discrete Random Variable

$$
\mathrm{E}\left((X-E(X))^{k}\right)=\sum_{i=1}^{n}\left(x_{i}-E(X)\right)^{k} P\left(X=x_{i}\right)
$$

- Continuous Random Variable

$$
\left.\mathrm{E}(X-E(x))^{k}\right)=\int_{-\infty}^{\infty}(x-E(x))^{k} f_{X}(x) d x
$$

Variance of the random variable

$$
\begin{aligned}
& \operatorname{Var}(\mathrm{X})=\sum_{i=1}^{n}\left(x_{i}-E(X)\right)^{2} P\left(X=x_{i}\right) \\
& \operatorname{Std}(X)=\sqrt{\operatorname{Var}(X)}
\end{aligned}
$$

- Std : is the standard deviation.
- Variance is a measure of random variable's randomness

Standard Deviation for a Discrete Random Variable

The standard deviation of a random variable is essentially the average distance the random variable falls from its mean over the long run.

If X is a random variable with possible values x_{1}, x_{2}, x_{3}, ..., occurring with probabilities $p_{1}, p_{2}, p_{3}, \ldots$, and expected value $E(X)=m$, then

Variance of $X=V(X)=\sigma^{2}=\sum\left(x_{i}-\mu\right)^{2} p_{i}$
Standard Deviation of $X=\sigma=\sqrt{\sum\left(x_{i}-\mu\right)^{2} p_{i}}$

Continuous Random Variables

Continuous random variable: the outcome can be any value in an interval or collection of intervals.

Example of CRV = height, time, weight, and money.

Probability density function for a continuous random variable X is a curve such that the area under the curve over an interval equals the probability that X is in that interval.
$P(a \leq X \leq b)=\quad$ area under density curve over the interval between the values a and b.

Continuous Random Variables

A density curve (or probability density function) is a graph of a continuous probability distribution. It must satisfy the following 2 properties.
\checkmark Total area under the curve $=1.0$
\checkmark Every point on the curve must have a vertical height that is 0 or greater (the curve cannot fall below the x-axis)

