Operating Systems

Process Description and Control

Chapter 3

© Dr. Ayman Abdel-Hamid, OS

Outline

Process States
Process Description

Process Control

© Dr. Ayman Abdel-Hamid, OS

¢ Interleave the execution of several
processes to maximize processor
utilization while providing reasonable
response time

* Allocate resources to processes

* Support interprocess communication and
user creation of processes

© Dr. Ayman Abdel-Hamid, OS 3

|« Also called a task
* Execution of an individual program

* Can be traced

— list the sequence of instructions that execute
for that process (process trace)

© Dr. Ayman Abdel-Hamid, OS 4

Address Wain Memory Program Counter

L]
1040 I X

Dispatcher

SO0
Process A

SO0

il

Process B

120y
Process C

Figure 3.1 Snapshot of Example Execution (Figure 3.3)
at Instruction Cycle 13
© Dr. Ayman Abdel-Hamid, OS

5000 8000 12000

5001 a001 12001
5002 a002 12002
5003 a003 12003
5004 12004
5005 : 12005
co0e I/O operation one
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011
(a) Trace of Process A {(h) Trace of Process B (c) Trace of Process C

5000 = Starting address of program of Process A
2000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.2 Traces of Processes of Figure 3.1

© Dr. Ayman Abdel-Hamid, OS

1 S000 27 12004
=2 S00o1 28 12005
= =00z Time out
=1 00z 29 100

5 004 =0 101

& S005 =1 102
_____________________ Titme out =2 103

T 100 =3 104

= 101 =4 105

o 102 35 006
10 103 ={a] 007
11 104 =7 SO0z
12 105 =8 Saoo9
1= 2000 39 s010
14 2001 =0 2011
15 2002 Time out
1a 2003 =11 100
__________________ 15D recuaest 2 101
17 100 A5 102z
1= 101 ¥ | 10=
12 10z A5 104
=20 10= e L 105
21 104 =7 12006
22 105 212 12007
23 12000 L) 12002
24 12001 a0 12009
25 12002 51 12010
26 1200= 52 12011

100 = Startmz addryess of dispatcher prograzn

shaded areas imdicate execution of dispatchery process.;,
first and third cobirnmns conrd mstrnaction ciycles,
secornd and fonnrth cobirnns shorar addyess of instraction beines exrecated

Figure 33 Comhbined Trace of Processes of Figure 3.1

© Dr. Ayman Abdel-Hamid, OS

~ » Process may be in one of two states
— Running

— Not-running

Dispatch

Enter Exit

Pause

(a) State transition dlagram

© Dr. Ayman Abdel-Hamid, OS 8

Pause

(b) Queulng dlagram

© Dr. Ayman Abdel-Hamid, OS 9

Submission of a batch job

User logs on

Created to provide a service such as
printing

Process creates another process

© Dr. Ayman Abdel-Hamid, OS

10

~ « Batch job issues Halt instruction
* User logs off
* Quit an application

Error and fault conditions

© Dr. Ayman Abdel-Hamid, OS 11

8 Normal completion
|« Time limit exceeded
* Memory unavailable
* Bounds violation

* Protection error

— example write to read-only file
* Arithmetic error

* Time overrun

— process waited longer than a specified maximum
for an event

© Dr. Ayman Abdel-Hamid, OS 12

* I/0O failure

* Invalid instruction

— happens when try to execute data
* Privileged instruction
* Data misuse

* Operating system intervention

— such as when deadlock occurs
Parent terminates so child processes terminate

Parent request

© Dr. Ayman Abdel-Hamid, OS 13

[zl
| =

=5}

K Not-running

— ready to execute
* Blocked

— waiting for I/O

* Dispatcher cannot just select the process
that has been 1n the queue the longest
because it may be blocked

© Dr. Ayman Abdel-Hamid, OS 14

Running
* Ready

* Blocked
* New
Exit

© Dr. Ayman Abdel-Hamid, OS 15

Dispatch
Admit &m)["’--

Timeout

Figure 3.5 Five-State Process Model

© Dr. Ayman Abdel-Hamid, OS 16

FRAFFSFFFEIFF P EIFF I SIS FFAF PSSP ES S EF S SEE EEE R EE E EE
Sl e e Sl e el S el S et S et el Sl et Sel e et el e et el et el e et e
]”tEETSE Hhthhhhhhhhhthhhhhhhhhthhhhhhhh&tﬁhﬁh&hﬁhﬁtﬁhﬁhﬂh&hﬁﬁ#ﬂﬁﬂ

]
fofalelelelateleletateteletotelutetoleloteteletototo o to e tute T et et e et o a e o o tetu o e et u ate e ta et o Tt

Process C

- = Running = Ready

= Blocked

Figure 3.6 Process States for Trace of Figure 3.3

© Dr. Ayman Abdel-Hamid, OS 17

|“““ Event Walt
-—-

(a) Single blocked queue

*When an event occurs, all processes in the blocked queue
that are waiting on that event are moved to the ready queue

o[f dispatching of processes dictated by a priority scheme,
can have a number of ready queues, one for each priority

level
© Dr. Ayman Abdel-Hamid, OS 18

H-E.ﬂ-[l}-' Queue pr— RElGEED
Admit Drispatch

‘ fn- Processor
Timeout

Event 1 Queune

Event 1 - Event 1 Walt
Occurs

Event 2 QQuene

Event 2 - Event 2 Walt
occurs

¥
¥ Why multiple
= event queues?

Event i Que e

Event n Event n Walt
-—
occurs

() Multiple blocked queues
© Dr. Ayman Abdel-Hamid, OS 19

- i
.....

Processor 1s faster than I/0 so all processes
could be waiting for I/0O

* Swap these processes to disk to free up more
memory

* Blocked state becomes suspend state when
swapped to disk
* Two new states

— Blocked, suspend (awaiting an event)

— Ready, suspend (available for execution when
loaded into main memory)

AN © Dr. Ayman Abdel-Hamid, OS 20

(a) With One Suspend State

© Dr. Ayman Abdel-Hamid, OS 21

L1
RN
‘ =

‘ - - S‘.’
.-"'_ 1\. -hwﬂﬁ

Activate

Suspend

(b)) With Two Suspend States
© Dr. Ayman Abdel-Hamid, OS 22

SwWapping

Cither OF reazon

Interactive user request

Timing

Parent process request

The operating system needs to release sufficient main
memory to bring in a process that 15 ready to execute.

The operating system tnay suspend a background or utility
process of a process that 1s suspected of causing a problem.

& uszer may wish to suspend execution of a program for
purposes of debugezing or in connection with the use of a
TESOULCE.

& process may be executed periodically (e g, an
accounting or systetn monitoring process) and may be
suspended while waiting for the next time interval

& parent process may wish to suspend execution of a
descendent to examine or modify the suspended process, or
to coordinate the activity of various descendents.

© Dr. Ayman Abdel-Hamid, OS 23

| « Operating System control structures

* Process control structures

© Dr. Ayman Abdel-Hamid, OS 24

¢ : Virtual
i : Memory
________________________ Pt~ NS S
J ; Computer
P Y Resources
Main
Processor 1/0 1/0 /O M
emory

P,: running, part in main memory, has control of 2 I/O devices
P,: in main memory, blocked waiting for an I/O device (allocated to P1)

P_: swapped out (suspended)

Figure 3.9 Processes and Resources (resource allocation at one snapshot in time)

OS manages the use of system resources by processes
© Dr. Ayman Abdel-Hamid, OS 25

=

* Information about the current status of
each process and resource

-« Tables are constructed for each entity the
operating system manages

o ";'-' e & \ © Dr. Ayman Abdel-Hamid, OS 26

Process

Image
| Memory Tables ——— =
I Process
Memory 1
Flles |
PFrocesses File Tables
- ': Primary Process Table
i - Process 1
= Process 2
— = Process
— ~
¥ Process
¥ i
¥
e ..- Process n

ure 3.10 General Structure of Operating System Control Tables
© Dr. Ayman Abdel-Hamid, OS 27

~ * Allocation of main memory to processes

~ « Allocation of secondary memory to
processes

* Protection attributes for access to shared
memory regions

* Information needed to manage virtual
memory

AN © Dr. Ayman Abdel-Hamid, OS 28

.+ /O device is available or assigned
* Status of I/O operation

* Location 1n main memory being used as
the source or destination of the 1I/0
transfer

© Dr. Ayman Abdel-Hamid, OS 29

Existence of files

* Location on secondary memory
* Current Status
 Attributes

* Sometimes this information 1s
maintained by a file-management system

© Dr. Ayman Abdel-Hamid, OS 30

 + Where process is located

 Attributes necessary for its management

— Process ID
— Process state

— Location in memory

© Dr. Ayman Abdel-Hamid, OS 31

- » Process Location

* Process Control Block

© Dr. Ayman Abdel-Hamid, OS 32

* Process includes set of programs to be
executed

— Data locations for local and global variables

— Any defined constants
— Stack

* Process control block (process descriptor)

— Collection of attributes used for process control

* Process image

— Collection of program, data, stack, and attributes

© Dr. Ayman Abdel-Hamid, OS 33

* See Table 3.5 on page 129

* Process identification

— Identifiers
* Numeric identifiers that may be stored with the process
control block include

— Identifier of this process (might be index into primary
process table)

— Identifier of the process that created this process (parent
process)

— User identifier responsible for the job

* Processor state information
* Process control information

© Dr. Ayman Abdel-Hamid, OS 34

* Processor State Information

— Contents of processor registers while a process is
running
* User-visible registers
* Control and status registers

* Stack pointers

— User-Visible Registers

* A user-visible register is one that may be referenced by
means of the machine language that the processor
executes. Typically, there are from 8 to 32 of these
registers, although some RISC implementations have over
100.

© Dr. Ayman Abdel-Hamid, OS 35

* Processor State Information

— Control and Status Registers

These are a variety of processor registers that are
employed to control the operation of the processor. These
include

* *Program counter: Contains the address of the next
instruction to be fetched

* oCondition codes: Result of the most recent arithmetic or
logical operation (e.g., sign, zero, carry, equal, overflow)

Status information: Includes interrupt enabled/disabled
flags, execution mode

© Dr. Ayman Abdel-Hamid, OS 36

* Processor State Information

— Stack Pointers

» Each process has one or more last-in-first-out
(LIFO) system stacks associated with it. A stack
1s used to store parameters and calling addresses
for procedure and system calls. The stack
pointer points to the top of the stack.

© Dr. Ayman Abdel-Hamid, OS 37

~ « Processor State Information
— Program status word (PSW)

* A register or a set of registers

* Typically contains condition codes and other
status information

* Example: the EFLAGS register on Pentium
machines

© Dr. Ayman Abdel-Hamid, OS 38

Identification flag DF = Direction flag

= Virtual interrupt pending IF = Interrupt enable flag

Virtual interrupt flag TE = Trap fag
Alignment check SF = Sign flag
Virtual 8086 mode ZF = Zero flag

= Resume flag AF = Auxiliary carry flag
= Nested task flag PF = Parity flag

IO privilege level CF = Carry flag

= Overflow flag

Figure 3.11 Pentium II EFLAGS Register

© Dr. Ayman Abdel-Hamid, OS 39

=
=l

* Process Control Information

— Scheduling and State Information

This 1s information that is needed by the operating system to
perform its scheduling function. Typical items of
information:

*Process state: defines the readiness of the process to be

scheduled for execution (e.g., running, ready, waiting,
halted).

*ePriority: One or more fields may be used to describe the
scheduling priority of the process. In some systems, several
values are required (e.g., default, current, highest-allowable)

*sScheduling-related information: This will depend on the
scheduling algorithm used. Examples are the amount of time
that the process has been waiting and the amount of time
that the process executed the last time it was running.

*Event: 1dentiymol svantathe process 1s awaiting before mcan
be resumed

* Process Control Information

— Data Structuring

* A process may be linked to other process 1n a
queue, ring, or some other structure. For
example, all processes in a waiting state for a
particular priority level may be linked in a
queue. A process may exhibit a parent-child
(creator-created) relationship with another
process. The process control block may contain
pointers to other processes to support these
structures.

© Dr. Ayman Abdel-Hamid, OS 41

* Process Control Information

— Interprocess Communication

* Various flags, signals, and messages may be associated
with communication between two independent processes.
Some or all of this information may be maintained in the
process control block.

— Process Privileges

* Processes are granted privileges in terms of the memory
that may be accessed and the types of instructions that
may be executed. In addition, privileges may apply to the
use of system utilities and services.

© Dr. Ayman Abdel-Hamid, OS 42

_:hi__:
=]

s v =

* Process Control Information

— Memory Management

 This section may include pointers to segment
and/or page tables that describe the virtual
memory assigned to this process.

— Resource Ownership and Utilization

» Resources controlled by the process may be
indicated, such as opened files. A history of
utilization of the processor or other resources
may also be included; this information may be
needed by the scheduler.

© Dr. Ayman Abdel-Hamid, OS 43

Process
Identification

Processor State
Information

Process Control
Information

User Stack

Private User
Address Space
{ Programs, Data)

Shared Address
Space

Process 1

Process
Identification

Processor State
Information

Process Control
Information

User Stack

Private User
Address Space
{ Programs, Data)

Shared Address
Space

Process 2

¥

Process
Identification

Processo State
Information

Process Control
Information

User Stack

Private User
Address Space
{ Programs, Data)

Shared Address
Space

Process i

Figure 3.12 User Processes in Virtual Memory
© Dr. Ayman Abdel-Hamid, OS

44

Process
Control
Block

Modes of Execution
* Process Creation
* Process Switching

Execution of the Operating System

© Dr. Ayman Abdel-Hamid, OS 45

User mode
— Less-privileged mode
— User programs typically execute in this mode
.+ System mode, control mode, or kernel mode
— More-privileged mode
— Kernel of the operating system
* A bit in PSW indicates the execution mode

* A user makes a call to an OS service =2 the
mode 1s set to kernel mode (typically, by
executing an instruction that changes the
mode)

© Dr. Ayman Abdel-Hamid, OS 46

- | » Assign a unique process identifier
~ * Allocate space for the process
¢ Initialize process control block

* Set up appropriate linkages

— Ex: add new process to linked list used for
scheduling queue

* Create or expand other data structures

— EX: maintain an accounting file

© Dr. Ayman Abdel-Hamid, OS 47

* A process switch may occur any time the OS
gains control from the currently running
process

* Interrupts
— Clock interrupt

 process has executed for the maximum allowable time
slice

— 1/0 interrupt
— Memory fault

* memory address is in virtual memory so it must be
brought into main memory

© Dr. Ayman Abdel-Hamid, OS 48

— error occurred

— may cause process to be moved to Exit state

* Supervisor call
— such as file open

— Generally, the use of a system call results in
placing the user process in the Blocked state

© Dr. Ayman Abdel-Hamid, OS 49

If an interrupt 1s pending, the process
does the following

— Saves the context of the current program
being executed

— Sets the program counter to the starting
address of an interrupt-handler program

— Switches from user mode to kernel mode
since the interrupt processing code may
include privileged instructions

© Dr. Ayman Abdel-Hamid, OS 50

does not necessanly mean a process
switch

| o After interrupt handler has executed, the
currently running process might resume
execution

— Save processor state information when
Interrupt occurs

— Restore information when control 1s returned
to the program that was in progress

© Dr. Ayman Abdel-Hamid, OS 51

Steps 1n a full process switch

~ * Save context of processor including
~_ program counter and other registers

» Update the process control block of the
process that 1s currently running

* Move process control block to
appropriate queue - ready, blocked

* Select another process for execution

© Dr. Ayman Abdel-Hamid, OS 52

|=zlh

o AETIRITE] S 7

| Steps in a full process switch (cont.)

- Update the process control block of the
process selected

* Update memory-management data
structures

* Restore context of the selected process

© Dr. Ayman Abdel-Hamid, OS 53

Is the OS a process?

(a) Separate kernel

Py P2 Py
s L L L L
tiome | vioms| " tioms]

Process Switching Functions

()OS functions execute within user processes

Py P> - - = P OS, - - = OS]

Process Switching Functions

()OS functions execute as separate processes

© Dr. Ayman Abdel-Hamid, OS 54

* Non-process Kernel (older OS)

— execute kernel outside of any process
— operating system code 1s executed as a separate
entity that operates in privileged mode
* Execution Within User Processes (smaller
machines: PCs and workstations)

— operating system software within context of a user
process

— process executes 1n privileged mode when
executing operating system code

© Dr. Ayman Abdel-Hamid, OS 55

Process
Identification

Processor State Process Control
Information Block

Process Conitrol
Information

LUser Stack

Private User
Address Space
{Programs, Data)

ernel Stack Contains OS code and
: data shared by all user
1
L] Shared Address
E s processes
-
1

R o o o o o o o

/

Figure 3.15 Process Image: Operating System
Executes Within User Space
© Dr. Ayman Abdel-Hamid, OS 56

~ * Process-Based Operating System

— major kernel functions are separate
processes

— Useful in multi-processor or multi-
computer environment (some of the OS
services can be shipped out to dedicated
processors, improving performance)

© Dr. Ayman Abdel-Hamid, OS 57

