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Subdividing memory to accommodate multiple
processes

* Memory needs to be allocated efficiently to
pack as many processes into memory as
possible

* Memory management requirements
— Relocation

— Protection

— Sharing

— Logical organization

_ — Physical organization
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* Relocation

— Programmer does not know where the
program will be placed in memory when it
1s executed

— While the program is executing, it may be
swapped to disk and returned to main
memory at a different location (relocated)

— Memory references must be translated in
the code to actual physical memory address
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Figure 7.1 Addressing Requirements for a Process




— Processes should not be able to reference
memory locations in another process
without permission

— Impossible to check absolute addresses 1n
programs since the program could be
relocated

— Must be checked during execution

* Operating system cannot anticipate all of the
memory references a program will make
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* Sharing

— Allow several processes to access the same
portion of memory

— Better to allow each process (person) access
to the same copy of the program rather than
have their own separate copy
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~ « Logical Organization
— Programs are written in modules

— Modules can be written and compiled
independently

— Different degrees of protection given to
modules (read-only, execute-only)

— Share modules
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-« Physical Organization
— Memory available for a program plus its
data may be insufficient

* Overlaying allows various modules to be
assigned the same region of memory

— Programmer does not know how much
space will be available
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-« Equal-size partitions

— any process whose size 1s less than or equal
to the partition size can be loaded into an
available partition

— 1f all partitions are full, the operating system
can swap a process out of a partition

— a program may not fit in a partition. The
programmer must design the program with
overlays
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~ | « Main memory use is inefficient. Any
program, no matter how small, occupies
an entire partition. This 1s called
internal fragmentation.
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* Equal-size partitions
— Trivial: because all partitions are of equal

size, it does not matter which partition 1s
used

* Unequal-size partitions

— can assign each process to the smallest
partition within which 1t will fit

— queue for each partition

— processes are assigned in such a way as to
minimize wasted memory within a partition
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(a) One process quene per partition (b) Single process queue
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Partitions are of variable length and
number

- Process is allocated exactly as much
memory as required

* Eventually get holes in the memory.
This 1s called exrernal fragmentation

* Must use compaction to shift processes
so they are contiguous and all free
memory 1s 1n one block
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* Operating system must decide which
free block to allocate to a process

= - * Best-fit algorithm
— Chooses the block that 1s closest 1n size to
the request

— Worst performer overall

— Since smallest block 1s found for process,
the smallest amount of fragmentation is left
memory compaction must be done more
often
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* First-fit algorithm
— Scan memory from the beginning and

choose first available block that 1s large
enough

— Fastest

— May have many processes loaded in the
front end of memory that must be searched
over when trying to find a free block
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* Next-fit

— Begin to scan memory from the location of the last
placement and choose next available block that 1s
large enough

— More often allocate a block of memory at the end
of memory where the largest block 1s found

— The largest block of memory 1s broken up 1nto
smaller blocks

— Compaction 1s required to obtain a large block at
the end of memory
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| - Entire space available is treated as a
. single block of 2V

-« If arequest of size s such that 2V < s <=
2U_ entire block is allocated

— Otherwise block 1s split into two equal
buddies

— Process continues until smallest block
greater than or equal to s 1s generated
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~ | * When program loaded into memory the actual
(absolute) memory locations are determined

==+ A process may occupy different partitions
which means different absolute memory
locations during execution (from swapping)

* Compaction will also cause a program to
occupy a different partition which means
different absolute memory locations
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* Logical

— reference to a memory location independent of the
current assignment of data to memory

— translation must be made to the physical address

* Relative

— address expressed as a location relative to some
known point

* Physical

— the absolute address or actual location in main
memory
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* Base register

— starting address for the process

-« Bounds register

— ending location of the process

* These values are set when the process 1s
loaded and when the process 1s swapped
n
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* The value of the base register 1s added to
a relative address to produce an absolute
address

* The resulting address 1s compared with
the value 1n the bounds register

* If the address 1s not within bounds, an
interrupt 1s generated to the operating
system

© Dr. Ayman Abdel-Hamid, OS 29



- --':j—E?  Partition memory into small equal-size chunks
- and divide each process into the same size
chunks (more convenient to be a power of 2)

* The chunks of a process are called pages and
chunks of memory are called frames

* Operating system maintains a page table for
each process

— contains the frame location for each page in the
process

— memory address consist of a page number and
offset within the page
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program) equivalent to logical address (page
number, offset)
— 16 bit addresses used

— Relative address 1502 with a page size 1024 (10 bits
needed for offset) corresponds to page 1, offset 478
(how?)

— 6 bits for page number (maximum of 2° = 64 pages)
— 1502 =0000010111011110

— Page 1 = 000001 offset 478 =0111011110
. — | Page, offset = 0000010111011110
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* Easy to implement a function in HWR to
perform dynamic address translation at run
time.

— (n+m) bit addresses (leftmost n: page #, rightmost
m: offset)

— Extract page # from address

— Use page # as an index 1nto process page table to
find frame number k

— Starting physical address of frame 1s k * 2™
— Physical address 1s k* 2™ +offset
— Need not be calculated, append frame number to

offset
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All segments of all programs do not have
to be of the same length

|« There is 2 maximum segment length

* Addressing consist of two parts - a
segment number and an offset

* Since segments are not equal,
segmentation 1s similar to dynamic
partitioning
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(n+m) bit addresses (leftmost n: segment #,
rightmost m: offset)

|« Extract segment # from address

| -« Use segment # as an index into process segment
table to find starting physical address of
segment

« Compare offset (rightmost m bits), to length of
segment. If offset is greater = address is
invalid

* Physical address 1s SUM of starting physical

wes address of segment + offset
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