
Memory Management

Chapter 7

Operating Systems

1© Dr. Ayman Abdel-Hamid, OS

Outline

•Memory Management Requirements

•Memory Partitioning

•Paging

•Segmentation

2© Dr. Ayman Abdel-Hamid, OS

Memory Management

• Subdividing memory to accommodate multiple
processes

• Memory needs to be allocated efficiently to
pack as many processes into memory as
possible

• Memory management requirements

– Relocation

– Protection

– Sharing

– Logical organization

– Physical organization

3© Dr. Ayman Abdel-Hamid, OS

Memory Management

Requirements
• Relocation

– Programmer does not know where the

program will be placed in memory when it

is executed

– While the program is executing, it may be

swapped to disk and returned to main

memory at a different location (relocated)

– Memory references must be translated in

the code to actual physical memory address

4© Dr. Ayman Abdel-Hamid, OS

5© Dr. Ayman Abdel-Hamid, OS

Memory Management

Requirements
• Protection

– Processes should not be able to reference
memory locations in another process
without permission

– Impossible to check absolute addresses in
programs since the program could be
relocated

– Must be checked during execution

• Operating system cannot anticipate all of the
memory references a program will make

6© Dr. Ayman Abdel-Hamid, OS

Memory Management

Requirements
• Sharing

– Allow several processes to access the same

portion of memory

– Better to allow each process (person) access

to the same copy of the program rather than

have their own separate copy

7© Dr. Ayman Abdel-Hamid, OS

Memory Management

Requirements
• Logical Organization

– Programs are written in modules

– Modules can be written and compiled

independently

– Different degrees of protection given to

modules (read-only, execute-only)

– Share modules

8© Dr. Ayman Abdel-Hamid, OS

Memory Management

Requirements
• Physical Organization

– Memory available for a program plus its

data may be insufficient

• Overlaying allows various modules to be

assigned the same region of memory

– Programmer does not know how much

space will be available

9© Dr. Ayman Abdel-Hamid, OS

Fixed Partitioning

• Equal-size partitions

– any process whose size is less than or equal

to the partition size can be loaded into an

available partition

– if all partitions are full, the operating system

can swap a process out of a partition

– a program may not fit in a partition. The

programmer must design the program with

overlays

10© Dr. Ayman Abdel-Hamid, OS

Fixed Partitioning

• Main memory use is inefficient. Any

program, no matter how small, occupies

an entire partition. This is called

internal fragmentation.

11© Dr. Ayman Abdel-Hamid, OS

12© Dr. Ayman Abdel-Hamid, OS

Placement Algorithm with

Partitions
• Equal-size partitions

– Trivial: because all partitions are of equal
size, it does not matter which partition is
used

• Unequal-size partitions

– can assign each process to the smallest
partition within which it will fit

– queue for each partition

– processes are assigned in such a way as to
minimize wasted memory within a partition

13© Dr. Ayman Abdel-Hamid, OS

14© Dr. Ayman Abdel-Hamid, OS

Dynamic Partitioning

• Partitions are of variable length and
number

• Process is allocated exactly as much
memory as required

• Eventually get holes in the memory.
This is called external fragmentation

• Must use compaction to shift processes
so they are contiguous and all free
memory is in one block

15© Dr. Ayman Abdel-Hamid, OS

16© Dr. Ayman Abdel-Hamid, OS

17© Dr. Ayman Abdel-Hamid, OS

Dynamic Partitioning

Placement Algorithm
• Operating system must decide which

free block to allocate to a process

• Best-fit algorithm

– Chooses the block that is closest in size to
the request

– Worst performer overall

– Since smallest block is found for process,
the smallest amount of fragmentation is left
memory compaction must be done more
often

18© Dr. Ayman Abdel-Hamid, OS

Dynamic Partitioning

Placement Algorithm
• First-fit algorithm

– Scan memory from the beginning and

choose first available block that is large

enough

– Fastest

– May have many processes loaded in the

front end of memory that must be searched

over when trying to find a free block

19© Dr. Ayman Abdel-Hamid, OS

Dynamic Partitioning

Placement Algorithm
• Next-fit

– Begin to scan memory from the location of the last

placement and choose next available block that is

large enough

– More often allocate a block of memory at the end

of memory where the largest block is found

– The largest block of memory is broken up into

smaller blocks

– Compaction is required to obtain a large block at

the end of memory

20© Dr. Ayman Abdel-Hamid, OS

21© Dr. Ayman Abdel-Hamid, OS

Buddy System

• Entire space available is treated as a

single block of 2U

• If a request of size s such that 2U-1 < s <=

2U, entire block is allocated

– Otherwise block is split into two equal

buddies

– Process continues until smallest block

greater than or equal to s is generated

22© Dr. Ayman Abdel-Hamid, OS

23© Dr. Ayman Abdel-Hamid, OS

24© Dr. Ayman Abdel-Hamid, OS

Relocation

• When program loaded into memory the actual

(absolute) memory locations are determined

• A process may occupy different partitions

which means different absolute memory

locations during execution (from swapping)

• Compaction will also cause a program to

occupy a different partition which means

different absolute memory locations

25© Dr. Ayman Abdel-Hamid, OS

Addresses

• Logical

– reference to a memory location independent of the

current assignment of data to memory

– translation must be made to the physical address

• Relative

– address expressed as a location relative to some

known point

• Physical

– the absolute address or actual location in main

memory

26© Dr. Ayman Abdel-Hamid, OS

27© Dr. Ayman Abdel-Hamid, OS

Registers Used during

Execution
• Base register

– starting address for the process

• Bounds register

– ending location of the process

• These values are set when the process is

loaded and when the process is swapped

in

28© Dr. Ayman Abdel-Hamid, OS

Registers Used during

Execution
• The value of the base register is added to

a relative address to produce an absolute

address

• The resulting address is compared with

the value in the bounds register

• If the address is not within bounds, an

interrupt is generated to the operating

system

29© Dr. Ayman Abdel-Hamid, OS

Paging

• Partition memory into small equal-size chunks
and divide each process into the same size
chunks (more convenient to be a power of 2)

• The chunks of a process are called pages and
chunks of memory are called frames

• Operating system maintains a page table for
each process

– contains the frame location for each page in the
process

– memory address consist of a page number and
offset within the page

30© Dr. Ayman Abdel-Hamid, OS

31© Dr. Ayman Abdel-Hamid, OS

32© Dr. Ayman Abdel-Hamid, OS

Page Tables for Example

Need to map logical address (page number, offset) into a

physical address (frame number, offset)

33© Dr. Ayman Abdel-Hamid, OS

Why Frame Size power of 2?

• Relative address (with reference to origin of the

program) equivalent to logical address (page

number, offset)

– 16 bit addresses used

– Relative address 1502 with a page size 1024 (10 bits

needed for offset) corresponds to page 1, offset 478

(how?)

– 6 bits for page number (maximum of 26 = 64 pages)

– 1502 = 0000010111011110

– Page 1 = 000001 offset 478 = 0111011110

– Page, offset = 0000010111011110
34© Dr. Ayman Abdel-Hamid, OS

Why Frame Size power of 2?

• Easy to implement a function in HWR to
perform dynamic address translation at run
time.
– (n+m) bit addresses (leftmost n: page #, rightmost

m: offset)

– Extract page # from address

– Use page # as an index into process page table to
find frame number k

– Starting physical address of frame is k * 2m

– Physical address is k* 2m +offset

– Need not be calculated, append frame number to
offset

35© Dr. Ayman Abdel-Hamid, OS

Segmentation

• All segments of all programs do not have

to be of the same length

• There is a maximum segment length

• Addressing consist of two parts - a

segment number and an offset

• Since segments are not equal,

segmentation is similar to dynamic

partitioning

36© Dr. Ayman Abdel-Hamid, OS

Dynamic Address Translation in

Segmentation

• (n+m) bit addresses (leftmost n: segment #,
rightmost m: offset)

• Extract segment # from address

• Use segment # as an index into process segment
table to find starting physical address of
segment

• Compare offset (rightmost m bits), to length of
segment. If offset is greater � address is
invalid

• Physical address is SUM of starting physical
address of segment + offset

37© Dr. Ayman Abdel-Hamid, OS

