Operating Systems

Memory Management

Chapter 7

© Dr. Ayman Abdel-Hamid, OS

Outline

Memory Management Requirements
Memory Partitioning
Paging

Segmentation

© Dr. Ayman Abdel-Hamid, OS

Subdividing memory to accommodate multiple
processes

* Memory needs to be allocated efficiently to
pack as many processes into memory as
possible

* Memory management requirements
— Relocation

— Protection

— Sharing

— Logical organization

_ — Physical organization

© Dr. Ayman Abdel-Hamid, OS 3

* Relocation

— Programmer does not know where the
program will be placed in memory when it
1s executed

— While the program is executing, it may be
swapped to disk and returned to main
memory at a different location (relocated)

— Memory references must be translated in
the code to actual physical memory address

© Dr. Ayman Abdel-Hamid, OS 4

Process control o

Information ppiry point ———p

to program
Branch
instruct
Increasing
address
values
Relerence
to data
CUrrent] c——
of stack
© Dr. Ayman Abdel-Hamid, OS 5

Figure 7.1 Addressing Requirements for a Process

— Processes should not be able to reference
memory locations in another process
without permission

— Impossible to check absolute addresses 1n
programs since the program could be
relocated

— Must be checked during execution

* Operating system cannot anticipate all of the
memory references a program will make

© Dr. Ayman Abdel-Hamid, OS

* Sharing

— Allow several processes to access the same
portion of memory

— Better to allow each process (person) access
to the same copy of the program rather than
have their own separate copy

© Dr. Ayman Abdel-Hamid, OS 7

~ « Logical Organization
— Programs are written in modules

— Modules can be written and compiled
independently

— Different degrees of protection given to
modules (read-only, execute-only)

— Share modules

© Dr. Ayman Abdel-Hamid, OS 8

-« Physical Organization
— Memory available for a program plus its
data may be insufficient

* Overlaying allows various modules to be
assigned the same region of memory

— Programmer does not know how much
space will be available

© Dr. Ayman Abdel-Hamid, OS 9

-« Equal-size partitions

— any process whose size 1s less than or equal
to the partition size can be loaded into an
available partition

— 1f all partitions are full, the operating system
can swap a process out of a partition

— a program may not fit in a partition. The
programmer must design the program with
overlays

© Dr. Ayman Abdel-Hamid, OS 10

~ | « Main memory use is inefficient. Any
program, no matter how small, occupies
an entire partition. This 1s called
internal fragmentation.

© Dr. Ayman Abdel-Hamid, OS 11

Operating System Operating System
BM BM

2M

4 M

oM

{a) Equal-size partitions (b) Unequal-size partitions
© Dr. Ayman Abdel-Hamid, OS 12
e 7.2 Example of Fixed Partitioning of a 64-Mbyte Memory

* Equal-size partitions
— Trivial: because all partitions are of equal

size, it does not matter which partition 1s
used

* Unequal-size partitions

— can assign each process to the smallest
partition within which 1t will fit

— queue for each partition

— processes are assigned in such a way as to
minimize wasted memory within a partition

© Dr. Ayman Abdel-Hamid, OS 13

(a) One process quene per partition (b) Single process queue

© Dr. Ayman Abdel-Hamid, OS 14

Partitions are of variable length and
number

- Process is allocated exactly as much
memory as required

* Eventually get holes in the memory.
This 1s called exrernal fragmentation

* Must use compaction to shift processes
so they are contiguous and all free
memory 1s 1n one block

© Dr. Ayman Abdel-Hamid, OS 15

Process | l 20M Process | 20M Process |

L 27

===
' |

(a) (b) (c) (d
Figure 7.4 The Effect of Dynamic Partitioning

© Dr. Ayman Abdel-Hamid, OS 16

LR

20M

|4

4M

= Clpaiy,

{f)

20M

(2)

© Dr. Ayman Abdel-Hamid, OS

Priscess 2 14M
vl
Prowress 4 AL
a1 |
Prowress 3 | &8
4M
i)

Figure 7.4 The Effect of Dynamic Partitioning

17

* Operating system must decide which
free block to allocate to a process

= - * Best-fit algorithm
— Chooses the block that 1s closest 1n size to
the request

— Worst performer overall

— Since smallest block 1s found for process,
the smallest amount of fragmentation is left
memory compaction must be done more
often

© Dr. Ayman Abdel-Hamid, OS 18

* First-fit algorithm
— Scan memory from the beginning and

choose first available block that 1s large
enough

— Fastest

— May have many processes loaded in the
front end of memory that must be searched
over when trying to find a free block

© Dr. Ayman Abdel-Hamid, OS 19

* Next-fit

— Begin to scan memory from the location of the last
placement and choose next available block that 1s
large enough

— More often allocate a block of memory at the end
of memory where the largest block 1s found

— The largest block of memory 1s broken up 1nto
smaller blocks

— Compaction 1s required to obtain a large block at
the end of memory

© Dr. Ayman Abdel-Hamid, OS 20

Taan 18N |
allocated

block (14K)

-
BN BN
Lt | Lt |

D Adlocaed hHock
14N I I Free biock 1401
Mext Fit

RS |

20 I
(=) Belorne () A Ther

Figure 7.5 Example Memory Configuration Before
and After Allocation of 16 Mbyte Block

© Dr. Ayman Abdel-Hamid, OS 21

| - Entire space available is treated as a
. single block of 2V

-« If arequest of size s such that 2V < s <=
2U_ entire block is allocated

— Otherwise block 1s split into two equal
buddies

— Process continues until smallest block
greater than or equal to s 1s generated

A N © Dr. Ayman Abdel-Hamid, OS 22

1 Mbyte block
Request 100 K
Request 240 K
Request 64 K
Request 2560 K
Release B
Release A
Request 75 K
Release C

Release E

Release D

1M
A=128K 128 K 50 K 12K
A=128K 1258 K B=256K SIZ K
A=12BK [t=6dKbd K B=256K 12K
A=128K |[U=6dKHd K B=256K D=256 K 256 K
A=12BK [t=6dKbd K 50 K D=256 K 256 K
I2ZE K [C=8dKHd K 250 K D=256 K 256 K
E=128K [F=6sai6d K 50 K D=256 K 256 K
E=128K 128 K 250 K D=256 K 256 K
S12 K D=256 K 256 K
1M

Flgure 7.6 Example of Buddy System

© Dr. Ayman Abdel-Hamid, OS

23

D

N\

¥
A= 128K [c=6iK

od K 2560 K

D=256 K

256 K

Figure 7.7 Tree Representation of Buddy System
© Dr. Ayman Abdel-Hamid, OS

24

~ | * When program loaded into memory the actual
(absolute) memory locations are determined

==+ A process may occupy different partitions
which means different absolute memory
locations during execution (from swapping)

* Compaction will also cause a program to
occupy a different partition which means
different absolute memory locations

© Dr. Ayman Abdel-Hamid, OS 25

* Logical

— reference to a memory location independent of the
current assignment of data to memory

— translation must be made to the physical address

* Relative

— address expressed as a location relative to some
known point

* Physical

— the absolute address or actual location in main
memory

© Dr. Ayman Abdel-Hamid, OS 26

Relative address

- Bl I Base Register

Bounds Register

Proscess Comtrol Bleck
....................... -
k4
. Adder Program
¥ Absolute
——» Comparator - — — -E.mm
T i
I i |
I I i
I I i
| 1 mmem=-—- >
| ¥ Data
: Interrupt to
| operating system
I
s e e e e e e —
Stack

Process image in
main memory

~ Figure 7.8 Hardware Support for Relocation

© Dr. Ayman Abdel-Hamid, OS

27

* Base register

— starting address for the process

-« Bounds register

— ending location of the process

* These values are set when the process 1s
loaded and when the process 1s swapped
n

A N © Dr. Ayman Abdel-Hamid, OS 28

* The value of the base register 1s added to
a relative address to produce an absolute
address

* The resulting address 1s compared with
the value 1n the bounds register

* If the address 1s not within bounds, an
interrupt 1s generated to the operating
system

© Dr. Ayman Abdel-Hamid, OS 29

- --':j—E? Partition memory into small equal-size chunks
- and divide each process into the same size
chunks (more convenient to be a power of 2)

* The chunks of a process are called pages and
chunks of memory are called frames

* Operating system maintains a page table for
each process

— contains the frame location for each page in the
process

— memory address consist of a page number and
offset within the page

© Dr. Ayman Abdel-Hamid, OS 30

-
] _11|i &
P

Fl:ﬂ:m
number

=T - R B Y R

10
11
12
13
14

Main memory

=T N I O R

10

11

12

13

14

(a) Fil'teen Available Frames

Fi

o Y

Main memory

AL

A.d

Al

AJd

(B Load Process A

© Dr. Ayman Abdel-Hamid, OS

—
"

= - I Y A

10
11
12
13
14

Main memory

AN

A.d

A2

Al
N LRI
R TR

(b Load Process B

ure 7.9 Assignment of Process Pages to Free Frames

31

Main memory Main memory Main memory

0 AL 0 AL 0 AL
1| Al 1| Al 1| Al
2 | AJ' 2 A2 2 | A2
3 2| AJd 3 A3
4 | 4 4 D
5 5 - D1
A AN 6 | s mb2 |
L C Y T W v T Vs s
s C A 8 VA 8 VA A
20 0 VA2 0 VALLC 20
o C 3 10 B 30 10 m
11 11
12 12 DA
13 13
14 14
{d) Load Process C {e) Swapou B (Y Load Process D

Flure 7.9 Assignment of Process Pages to Free Frames

© Dr. Ayman Abdel-Hamid, OS 32

0

1

2| 2

J
Process A
page table

Need to map logical address (page number, offset) into a
physical address (frame number, offset)

Process B
page table

0| 7

1 8

2], 9

3| 10
Process C
page table

© Dr. Ayman Abdel-Hamid, OS

13

14

0 4

1 5

2 D

3| 11

4| 12
Process D
page table

Free frame

list

Fiiure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

program) equivalent to logical address (page
number, offset)
— 16 bit addresses used

— Relative address 1502 with a page size 1024 (10 bits
needed for offset) corresponds to page 1, offset 478
(how?)

— 6 bits for page number (maximum of 2° = 64 pages)
— 1502 =0000010111011110

— Page 1 = 000001 offset 478 =0111011110
. — | Page, offset = 0000010111011110

© Dr. Ayman Abdel-Hamid, OS 34

* Easy to implement a function in HWR to
perform dynamic address translation at run
time.

— (n+m) bit addresses (leftmost n: page #, rightmost
m: offset)

— Extract page # from address

— Use page # as an index 1nto process page table to
find frame number k

— Starting physical address of frame 1s k * 2™
— Physical address 1s k* 2™ +offset
— Need not be calculated, append frame number to

offset

© Dr. Ayman Abdel-Hamid, OS 35

All segments of all programs do not have
to be of the same length

|« There is 2 maximum segment length

* Addressing consist of two parts - a
segment number and an offset

* Since segments are not equal,
segmentation 1s similar to dynamic
partitioning

© Dr. Ayman Abdel-Hamid, OS 36

(n+m) bit addresses (leftmost n: segment #,
rightmost m: offset)

|« Extract segment # from address

| -« Use segment # as an index into process segment
table to find starting physical address of
segment

« Compare offset (rightmost m bits), to length of
segment. If offset is greater = address is
invalid

* Physical address 1s SUM of starting physical

wes address of segment + offset
© Dr. Ayman Abdel-Hamid, OS 37

